Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

YIN Wanzhong, TIAN Daolai, XIE Yu, XUE Ming, YAO Jin. Research Progress of Induction Time in Flotation Process[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2023.03.001
Citation: YIN Wanzhong, TIAN Daolai, XIE Yu, XUE Ming, YAO Jin. Research Progress of Induction Time in Flotation Process[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 1-9. doi: 10.13779/j.cnki.issn1001-0076.2023.03.001

Research Progress of Induction Time in Flotation Process

More Information
  • Flotation has the advantages of high separation efficiency and wide application range. The induction time refers to the time required for bubble and particle from collision to adhesion, which plays a crucial role in the flotation process. In general, the shorter the induction time, the easier the adhesion between bubble and particle, and the better the floatability of minerals. The definition, testing methods, and development of testing techniques of induction time were introduced, and the research progress of influencing factors of induction time (including bubble characteristics, particle properties and solution environment) in recent years was systematically analyzed. Through comprehensive analysis, it is believed that the induction time is an important parameter that affects the flotation efficiency. Measures such as optimizing the surface characteristics of mineral particles and flotation solution conditions can be taken to shorten the bubble-particle induction time, so as to improve the flotation recovery of minerals.

  • 加载中
  • [1] 魏德洲. 固体物料分选学: 第3版[M]. 北京: 冶金工业出版社, 2015.

    Google Scholar

    WEI D Z. Solid material selection: 3rd edition[M]. Beijing: Metallurgical Industry Press, 2015.

    Google Scholar

    [2] 印万忠, 白丽梅, 荣令坤. 浮游选矿技术问答[M]. 北京: 化学工业出版社, 2012.

    Google Scholar

    YIN W Z, BAI L M, RONG L K. Flotation technology question answering[M]. Beijing: Chemical Industry Press, 2012.

    Google Scholar

    [3] 张宁宁. 浮选体系中铝硅矿物-气泡作用机制及粘附行为调控研究[D]. 徐州: 中国矿业大学, 2018.

    Google Scholar

    ZHANG N N. Study on the interaction mechanism of alumina/silicon minerals-bubbles and regulation of adhesion behavior in the flotation system[D]. Xuzhou: China University of Mining and Technology, 2018.

    Google Scholar

    [4] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2016.

    Google Scholar

    XIE G Y. Mineral processing[M]. Xuzhou: China University of Mining and Technology Press, 2016.

    Google Scholar

    [5] NGUYEN A, SCHULZE H, RALSTON J. Elementary steps in particle-bubble attachment[J]. International Journal of Mineral Processing, 1997, 51(1): 183−195.

    Google Scholar

    [6] WANG W X, ZHOU Z A, NANDAKUMAR K, et al. An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions[J]. International Journal of Mineral Processing, 2004, 75(1): 69−82.

    Google Scholar

    [7] VERRELLI D I, ALBIJANIC B. A comparison of methods for measuring the induction time for bubble-particle attachment[J]. Minerals Engineering, 2015, 80: 8−13. doi: 10.1016/j.mineng.2015.06.011

    CrossRef Google Scholar

    [8] SVEN-NILSSON I. Effect of contact time between mineral and air bubbles on flotation[J]. Kolloid-z, 1934, 69(2): 230−232. doi: 10.1007/BF01433238

    CrossRef Google Scholar

    [9] EIGELES M A, VOLOVA M L. Kinetic investigation of effect of contact time, temperature and surface condition on the adhesion of bubble to mineral surfaces[J]. Proceedings, 1960: 271.

    Google Scholar

    [10] GU G X, XU Z H, NANDAKUMAR K, et al. Effects of physical environment on induction time of air-bitumen attachment[J]. International Journal of Mineral Processing, 2003, 69(1): 235−250.

    Google Scholar

    [11] 陈亮. 溶液化学特性对低阶煤-油泡矿化行为的影响与调控研究[D]. 徐州: 中国矿业大学, 2018.

    Google Scholar

    CHEN L. Research on the effect and regulation of solution chemical characteristics on the mineralization behavior between low rank coal and oily bubble[D]. Xuzhou: China University of Mining and Technology, 2018.

    Google Scholar

    [12] 安茂燕. 脂肪酸-烃类油浮选低阶煤协同作用机理研究[D]. 徐州: 中国矿业大学, 2019.

    Google Scholar

    AN M Y. Study on synergistic mechanism of fatty acid-hydrocarbon oil for low rank coal flotation[D]. Xuzhou: China University of Mining and Technology, 2019.

    Google Scholar

    [13] 陈松降, 陶秀祥, 杨彦成, 等. 神东低阶煤浮选诱导时间的实验研究[J]. 煤炭技术, 2016, 35(7): 319−321.

    Google Scholar

    CHEN S J, TAO X X, YANG Y C, et al. Experimental study on induction time of Shendong low rank coal[J]. Coal Technology, 2016, 35(7): 319−321.

    Google Scholar

    [14] 邢耀文. 颗粒气泡间相互作用力及液膜薄化动力学研究[D]. 徐州: 中国矿业大学, 2018.

    Google Scholar

    XING Y W. Interaction force between bubble and particle and the thinning dynamics of the thin liquid film[D]. Xuzhou: China University of Mining and Technology, 2018.

    Google Scholar

    [15] 王让, 陶秀祥, 陈松降, 等. 超声波处理对褐煤黏附及浮选过程的强化作用[J]. 中国科技论文, 2021, 16(9): 992−998.

    Google Scholar

    WANG R, TAO X X, CHEN S J, et al. Strengthening effect of ultrasonic treatment on adhesion and flotation process of lignite[J]. China Sciencepaper, 2021, 16(9): 992−998.

    Google Scholar

    [16] XIA W C. Role of surface roughness in the attachment time between air bubble and flat ultra−low−ash coal surface[J]. International Journal of Mineral Processing, 2017, 168: 19−24. doi: 10.1016/j.minpro.2017.09.006

    CrossRef Google Scholar

    [17] CHEN Y R, XIA W C, XIE G Y. Contact angle and induction time of air bubble on flat coal surface of different roughness[J]. Fuel, 2018, 222(JUN.15): 35−41.

    Google Scholar

    [18] 陈松降, 陶秀祥, 何环, 等. 油泡-低阶煤颗粒间的黏附特性[J]. 煤炭学报, 2017, 42(3): 745−752.

    Google Scholar

    CHEN S J, TAO X X, HE H, et al. Attachment characteristics between oily bubbles and low rank coal particles[J]. Journal of China Coal Society, 2017, 42(3): 745−752.

    Google Scholar

    [19] JE J, KWON J, CHO H. Simulation of bubble−plate attachment and estimation of induction time using smoothed particle hydrodynamics[J]. Minerals Engineering, 2020, 149(C): 106227.

    Google Scholar

    [20] 曾维能. 微纳米气泡对微细粒锡石浮选的影响及其机理[D]. 武汉: 武汉理工大学, 2021.

    Google Scholar

    ZENG W N. Effect of micro−nano bubbles on fine cassiterite flotation and its mechanism[D]. Wuhan: Wuhan University of Technology, 2021.

    Google Scholar

    [21] 王市委, 吕洪强, 陈松降, 等. 低阶煤颗粒−气/油泡间的诱导时间研究[J]. 煤炭学报, 2020, 45(2): 786−792.

    Google Scholar

    WANG S W, LV H Q, CHEN S J, et al. Investigation of the induction times between low rank coal particles and air/oily bubbles[J]. Journal of China Coal Society, 2020, 45(2): 786−792.

    Google Scholar

    [22] 陈泉源, 张泾生, 王淀佐. 气泡与颗粒作用研究新进展[J]. 国外金属矿选矿, 2001, 38(2): 17−19,24.

    Google Scholar

    CHEN Q Y, ZHANG J S, WANG D Z. Advances in the study of interaction between bubbles and particles[J]. Metallic Ore Dressing Abroad, 2001, 38(2): 17−19,24.

    Google Scholar

    [23] ZHOU Y, ALBIJANIC B, PANJIPOUR R, et al. Understanding of attachment efficiency and induction time between bubbles and pyrite particles in flotation[J]. Advanced Powder Technology, 2021, 32(2): 424−431. doi: 10.1016/j.apt.2020.12.021

    CrossRef Google Scholar

    [24] ZHANG Z J, ZHUANG L, WANG L, et al. The relationship among contact angle, induction time and flotation recovery of coal[J]. International Journal of Coal Preparation and Utilization, 2018, 41(6): 1−9.

    Google Scholar

    [25] FAHAD M K, PRAKASH R, MAJUMDER S K, et al. Investigation of the induction time and recovery in a flotation column: A kinetic analysis[J]. Separation Science and Technology, 2022, 57(18): 2937−2954. doi: 10.1080/01496395.2022.2084629

    CrossRef Google Scholar

    [26] BU X N, CHEN Y R, MA G X, et al. Differences in dry and wet grinding with a high solid concentration of coking coal using a laboratory conical ball mill: Breakage rate, morphological characterization, and induction time[J]. Advanced Powder Technology, 2019, 30(11): 2703−2711. doi: 10.1016/j.apt.2019.08.016

    CrossRef Google Scholar

    [27] 马广喜. 颗粒形状对颗粒与气泡粘附-脱附行为的影响机理研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    MA G X. Influence mechanism of particle shape on bubble−particle attachment and detachment behavior[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [28] VERRELLI D I, BRUCKARD W J, KOH P T, et al. Particle shape effects in flotation. Part 1: Microscale experimental observations[J]. Minerals Engineering, 2014, 58: 80−89. doi: 10.1016/j.mineng.2014.01.004

    CrossRef Google Scholar

    [29] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society, 1936, 28(8): 988−994.

    Google Scholar

    [30] 刘敏, 张友飞, 郭芳余, 等. 表面粗糙度对煤泥可浮性的影响[J]. 煤炭科学技术, 2019, 47(10): 253−258.

    Google Scholar

    LIU M, ZHANG Y F, GUO F Y, et al. Effect of surface roughness on floatability of coal slime[J]. Coal Science and Technology, 2019, 47(10): 253−258.

    Google Scholar

    [31] 胡海山. 低阶煤颗粒-气泡诱导时间测试及表面改性[J]. 中国科技论文, 2019, 14(10): 1055−1059.

    Google Scholar

    HU H S. Low-rank coal particle-bubble induction time test and surface modification[J]. China Sciencepaper, 2019, 14(10): 1055−1059.

    Google Scholar

    [32] MAO Y Q, XIE G Y, QI X H, et al. Effects of ultrasonic pretreatment on particle size and surface topography of lignite and its relationship to flotation response[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 43(10): 1−9.

    Google Scholar

    [33] LI M, XING Y W, ZHU C Y, et al. Effect of roughness on wettability and floatability: Based on wetting film drainage between bubbles and solid surfaces[J]. International Journal of Mining Science and Technology, 2022, 32(6): 1389−1396. doi: 10.1016/j.ijmst.2022.09.013

    CrossRef Google Scholar

    [34] HASSAS B V, CALISKAN H, GUVEN O, et al. Effect of roughness and shape factor on flotation characteristics of glass beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492: 88−99.

    Google Scholar

    [35] ZAWALA J, DRZYMALA J, MALYSA K. An investigation into the mechanism of the three-phase contact formation at fluorite surface by colliding bubble[J]. International Journal of Mineral Processing, 2008, 88(3): 72−79.

    Google Scholar

    [36] 桂东骄. 不同溶液化学条件下煤与油泡的粘附过程及液膜薄化特性研究[D]. 徐州: 中国矿业大学, 2020.

    Google Scholar

    GUI D J. Study on attachment between coal and oily bubbles and the thinning characteristics of wetting film under various solution chemistry conditions[D]. Xuzhou: China University of Mining and Technology, 2020.

    Google Scholar

    [37] ZHOU F, WANG L X, XU Z H, et al. Interaction of reactive oily bubble in flotation of bastnaesite[J]. Journal of Rare Earths, 2014, 32(8): 772−778. doi: 10.1016/S1002-0721(14)60139-3

    CrossRef Google Scholar

    [38] 胡熙庚. 浮选理论与工艺[M]. 长沙: 中南工业大学出版社, 1991.

    Google Scholar

    HU X G. Flotation theory and technology[M]. Changsha: Central South University of Technology Press, 1991.

    Google Scholar

    [39] ALBIJANIC B, OZDEMIR O, NGUYEN A V, et al. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation[J]. Advances in Colloid and Interface Science, 2010, 159(1): 1−21. doi: 10.1016/j.cis.2010.04.003

    CrossRef Google Scholar

    [40] LI M, XIA Y C, ZHANG Y F, et al. Mechanism of shale oil as an effective collector for oxidized coal flotation: From bubble−particle attachment and detachment point of view[J]. Fuel, 2019, 255(C): 115885.

    Google Scholar

    [41] 蒋善勇, 夏文成, 李懿江, 等. 油酸钠联合六偏磷酸钠浮选不黏煤的机理研究[J]. 煤炭转化, 2020, 43(6): 6−65.

    Google Scholar

    JIANG S Y, XIA W C, LI Y J, et al. Mechanism of non−caking coal flotation using sodium oleate and sodium hexametaphosphate[J]. Coal Conversion, 2020, 43(6): 6−65.

    Google Scholar

    [42] 邬丛珊. 油类捕收剂对煤粒气泡间相互作用行为的影响机理研究[D]. 太原: 太原理工大学, 2021.

    Google Scholar

    WU C S. Study on the effect of oil collector on the interaction behavior between coal particle and bubble and the related mechanism[D]. Taiyuan: Taiyuan University of Technology, 2021.

    Google Scholar

    [43] YOON R-H, YORDAN J L. Induction time measurements for the quartz-amine flotation system[J]. Journal of Colloid and Interface Science, 1991, 141(2): 374−383. doi: 10.1016/0021-9797(91)90333-4

    CrossRef Google Scholar

    [44] 程雅丽. 煤泥浮选中捕收剂与起泡剂交互作用机理的研究[D]. 北京: 中国矿业大学(北京), 2021.

    Google Scholar

    CHENG Y L. Study on the interaction mechanism of collector and frother in slime flotation[D]. Beijing: China University of Mining and Technology(Beijing), 2021.

    Google Scholar

    [45] 郝晓栋. 复配捕收剂诱导的油泡形成机制及对低阶煤浮选的影响研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    HAO X D. Formation mechanism of oil bubble induced by compound collector and its effect on flotation of low rank coal[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [46] RAMIREZ A, GUTIERREZ L, LASKOWSKI J S. Use of “oily bubbles” and dispersants in flotation of molybdenite in fresh and seawater[J]. Minerals Engineering, 2020, 148(C): 1−9.

    Google Scholar

    [47] 胡海山. 低阶煤-气/油泡的矿化过程特征及其活性油泡浮选过程强化研究[D]. 徐州: 中国矿业大学, 2020.

    Google Scholar

    HU H S. Mineralization characteristics of low rank coal−gas/oil bubbles and the flotation process intensification by activated oil bubble[D]. Xuzhou: China University of Mining and Technology, 2020.

    Google Scholar

    [48] 艾光华, 蔡鑫, 毕康颖, 等. 金属离子对矿物浮选行为影响的研究进展[J]. 有色金属科学与工程, 2017, 8(6): 70−74.

    Google Scholar

    AI G H, CAI X, BI K Y, et al. Research progress on the effect of matal ions on mineral flotation behavior[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 70−74.

    Google Scholar

    [49] 高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4): 859−868.

    Google Scholar

    GAO Y S, GAO Z Y, SUN W. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 859−868.

    Google Scholar

    [50] FAN C W, HU Y C, MARKUSZEWSKI R, et al. Role of induction time and other properties in the recovery of coal from aqueous suspensions by agglomeration with heptane[J]. Energy Fuels, 1989, 3(3): 376−381. doi: 10.1021/ef00015a021

    CrossRef Google Scholar

    [51] CAO S M, CAO Y J, MA Z L, et al. Metal ion release in bastnaesite flotation system and implications for flotation[J]. Minerals, 2018, 8(5): 203. doi: 10.3390/min8050203

    CrossRef Google Scholar

    [52] ZHANG Z J, LIU J T. Effect of calcium ions on induction time between a coal particle and air bubble[J]. International Journal of Coal Preparation and Utilization, 2015, 35(1): 31−38. doi: 10.1080/19392699.2014.934984

    CrossRef Google Scholar

    [53] 陈亮, 陈松降, 陶秀祥, 等. 电解质对低阶煤油泡浮选矿化过程的影响[J]. 煤炭学报, 2018, 43(5): 1432−1439.

    Google Scholar

    CHEN L, CHEN S J, TAO X X, et al. Effects of electrolytes on the mineralization process in oily−bubble flotation of low rank coal[J]. Journal of China Coal Society, 2018, 43(5): 1432−1439.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1110) PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint