Citation: | MENG Lingxuan, ZHAO Tonglin, FAN Zhaolin, MA Fangyuan, LIU Xinyue, ZHANG Di, ZHANG Mingze, LI Xiangwei, LI Mingjiao. Research Status of Nanobubble Enhanced Flotation Mechanism of Ultrafine Particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 162-168. doi: 10.13779/j.cnki.issn1001-0076.2023.07.002 |
Nanobubble flotation is one of the effective technologies for recovering fine minerals, which has the advantages of energy saving, convenience and low drug consumption. At present, nanobubble flotation is applied to a variety of minerals, such as coal, graphite, hematite, phosphate rock. However, there are still many gaps in the theoretical research of nanobubbles, such as the stability mechanism, dynamic equilibrium, three−phase wire pinning hypothesis. It should be noted that the classical DLVO theory also fails to explain the super-stable nanobubbles. The properties of nanobubbles and the mechanism of enhanced flotation were described from the aspects, including nanbubble formation surface contact angle, preferential selective nucleation, capillary mechanism and nanobubble stability. On this basis, the research blank of nanobubble enhanced flotation mechanism of ultrafine particles was summarized, which pointed out the direction for the theoretical research of ultrafine particles nanobubble flotation.
[1] | MA F Y, TAO D P, TAO Y J. Effects of nanobubbles in column flotation of Chinese sub−bituminous coal[J]. International Journal of Coal Preparation and Utilization, 2022, 42(4): 1126−1142. doi: 10.1080/19392699.2019.1692340 |
[2] | SUN Q Y, YIN W Z, LI D, et al. Improving the sulfidation−flotation of fine cuprite by hydrophobic flocculation pretreatment[J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(11): 1256−1262. doi: 10.1007/s12613-018-1678-4 |
[3] | HAOH, LI L, SOMASUNDARAN P, et al. Adsorption of Pregelatinized Starch for Selective Flocculation and Flotation of Fine Siderite[J]. Langmuir, 2019, 35(21): 6878−6887. doi: 10.1021/acs.langmuir.9b00669 |
[4] | MEDEIRONS A R S, BALTAR C A M. Importance of collector chain length in flotation of fine particles[J]. Minerals Engineering, 2018, 122: 179−184. doi: 10.1016/j.mineng.2018.03.008 |
[5] | 廖世双, 欧乐明, 周伟光. 空化过程微纳米气泡性质及其对细粒矿物浮选的影响[J]. 中国有色金属学报, 2019, 29(7): 1567−1574. doi: 10.19476/j.ysxb.1004.0609.2019.07.25 LIAO S S, OU L M, ZHOU W G. Micro-nano bubbles properties induced by hydrodynamic cavitation and their influences on fine mineral flotation[J]. Chinese Journal of Nonferrous Metals, 2019, 29(7): 1567−1574. doi: 10.19476/j.ysxb.1004.0609.2019.07.25 |
[6] | 冯其明, 周伟光, 石晴. 纳米气泡的形成及其对微细粒矿物浮选的影响[J]. 中南大学学报(自然科学版), 2017, 48(1): 9−15. FENG Q M, ZHOU W G, SHI Q. Formation of nano-bubbles and their influences on ultrafine mineral flotation[J]. Journal of Central South University (Natural Science Edition), 2017, 48(1): 9−15. |
[7] | MA F Y, TAO D P, TAO Y J, et al. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation[J]. International Journal of Mining Science and Technology, 2021, 31(6): 1063−1074. doi: 10.1016/j.ijmst.2021.06.005 |
[8] | LI C W, XU M, XING Y, et al. Efficient separation of fine coal assisted by surface nanobubbles[J]. Separation and Purification Technology, 2020, 249: 117163. doi: 10.1016/j.seppur.2020.117163 |
[9] | 陶有俊, 刘谦, TAO D, 等. 纳米泡提高细粒煤浮选效果的研究[J]. 中国矿业大学学报, 2009, 38(6): 820−823. doi: 10.3321/j.issn:1000-1964.2009.06.012 TAO Y J, LIU Q, TAO D, et al. Enhancing efficiency of fine coal flotation by picobubbles[J]. Journal of China University of Mining & Technology, 2009, 38(6): 820−823. doi: 10.3321/j.issn:1000-1964.2009.06.012 |
[10] | TAO D P, WU Z X, SOBHY A, et al. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms[J]. Powder Technology, 2021, 379: 12−25. doi: 10.1016/j.powtec.2020.10.040 |
[11] | LI M, BUSSONNIERE A, BRONSON M, et al. Study of venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles[J]. Minerals Engineering, 2019, 132: 268−74. doi: 10.1016/j.mineng.2018.11.001 |
[12] | ZHANG X Y, WANG Q S, WU Z X, et al. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(2): 152−161. doi: 10.1007/s12613-019-1936-0 |
[13] | LI C W, LI X, XU M, et al. Effect of ultrasonication on the flotation of fine graphite particles: Nanobubbles or not[J]. Ultrasonics Sonochemistry, 2020, 69: 105243. doi: 10.1016/j.ultsonch.2020.105243 |
[14] | HAIN N, HANDSCHUH−WANG S, WESNER D, et al. Multimodal microscopy-based identification of surface nanobubbles[J]. Journal of Colloid and Interface Science, 2019, 547: 162−170. doi: 10.1016/j.jcis.2019.03.084 |
[15] | GUO W, SHAN H, GUAN M, et al. Investigation on nanobubbles on graphite substrate produced by the water–NaCl solution replacement[J]. Surface Science, 2012, 606(17/18): 1462−1466. doi: 10.1016/j.susc.2012.05.018 |
[16] | ZHANG F, XING Y, CHANG G, et al. Enhanced lignite flotation using interfacial nanobubbles based on temperature difference method[J]. Fuel, 2021, 293: 120313. doi: 10.1016/j.fuel.2021.120313 |
[17] | ZHOU L, WANG X, HYUN−JOON S, et al. Surface nanobubbles produced by cold water investigated using scanning transmission x−ray microscopy[J]. Microscopy and Microanalysis, 2018, 24(S2): 470−471. doi: 10.1017/S1431927618014587 |
[18] | OWENS C L, SCHACH E, HEINIG T, et al. Surface nanobubbles on the rare earth fluorcarbonate mineral synchysite[J]. Journal of Colloid and Interface Science, 2019, 552: 66−71. doi: 10.1016/j.jcis.2019.05.014 |
[19] | ZHANG L J, ZHANGY, ZHANG X, et al. Electrochemically controlled formation and growth of hydrogen nanobubbles[J]. Langmuir, 2006, 22(19): 8109−8113. doi: 10.1021/la060859f |
[20] | 刘玉龙, 金诚, 刘欲文, 等. 纳米气泡电化学研究进展[J]. 中国科学:化学, 2021, 51(3): 310−322. LIU Y L, JIN C, LIU Y W, et al. Recent process in gas nanobubble electrochemistry[J]. Scientia Sinica(Chimica), 2021, 51(3): 310−322. |
[21] | CALAGAROTO S, WILBERG K Q, RUBIO, J. On the nanobubbles interfacial properties and future applications in flotation[J]. Minerals Engineering, 2014, 60: 33−40. doi: 10.1016/j.mineng.2014.02.002 |
[22] | XIAO W, WANG X X, ZHOU L M, et al. The influence of mixing and nano-solids on the formation of nanobubbles[J]. The Journal of Physical Chemistry B, 2019, 123(1): 317−323. doi: 10.1021/acs.jpcb.8b11385 |
[23] | ZHANG F F, YANG H C, GUI X H, et al. Interfacial nanobubbles on different hydrophobic surfaces and their effect on the interaction of inter-particles[J]. Applied Surface Science, 2022, 582: 152184. |
[24] | SOBHY A, TAO D. Nanobubble column flotation of fine coal particles and associated fundamentals[J]. International Journal of Mineral Processing, 2013, 124: 109−116. doi: 10.1016/j.minpro.2013.04.016 |
[25] | 张睿毅, 陈岚, 葛广路. 体相纳米气泡的消除与尺寸调控研究进展[J]. 环境工程技术学报, 2022, 12(4): 1310−1316. doi: 10.12153/j.issn.1674-991X.20210853 ZHANG R Y, CHEN L, GE G L. Research progress on elimination and size control of bulk nanobubbles[J]. Journal of Environmental Engineering Technology, 2022, 12(4): 1310−1316. doi: 10.12153/j.issn.1674-991X.20210853 |
[26] | ZHOU W G, WU C N, LV H Z, et al. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation[J]. Applied Surface Science, 2020, 508(1): 145282. |
[27] | DING S H, XING Y W, ZHENG X, et al. New insights into the role of surface nanobubbles in bubble−particle detachment[J]. Langmuir, 2020, 36(16): 4339−4346. doi: 10.1021/acs.langmuir.0c00359 |
[28] | TANG C L, MA F Y, WU T Y, ET AL. Study on surface physical and chemical mechanism of nanobubble enhanced flotation of fine graphite[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 389−396. |
[29] | 张立娟, 方海平, 胡钧. 纳米气泡的科学之谜[J]. 物理, 2018, 47(9): 574−583. doi: 10.7693/wl20180906 ZHANG L J, FANG H P, HUN J. Scientific mysteries of nanobubbles[J]. Physics, 2018, 47(9): 574−583. doi: 10.7693/wl20180906 |
[30] | EPSTEIN P S, PLESSET M S. On the stability of gas bubbles in liquid−gas solutions[J]. Journal of Chemical physics, 1950, 18(11): 1505−1509. doi: 10.1063/1.1747520 |
[31] | ISHIDA N, INOUE T, MIYAHARA M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping−mode atomic force microscopy[J]. Langmuir, 2000, 16(16): 6377−6380. doi: 10.1021/la000219r |
[32] | BORKENT B M, BEER S D, MUGELE F, et al. On the shape of surface nanobubbles[J]. Langmuir, 2010, 26(1): 260−268. doi: 10.1021/la902121x |
[33] | 张旭瑜. 纳米气泡表征及其在赤铁矿反浮选中的应用[D]. 鞍山: 辽宁科技大学, 2020. ZHANG X Y. Characterization of nanobubbles and its application in reverse flotation of hematite[D]. Anshan: University of Science and Technology Liaoning, 2020. |
[34] | ETCHEPARE R, OLIVEIRA H, NICKNIG M, et al. Nanobubbles: Generation using a multiphase pump, properties and features in flotation[J]. Minerals Engineering, 2017, 112: 19−26. doi: 10.1016/j.mineng.2017.06.020 |
[35] | LIU Y W, WANG J J, ZHANG X R, et al. Contact line pinning and the relationship between nanobubbles and substrates[J]. Journal of Chemical Physics, 2014, 140(5): 054705. doi: 10.1063/1.4863448 |
[36] | BROTCHIE A, ZHANG X H. Response of interfacial nanobubbles to ultrasound irradiation[J]. Soft Matter, 2011, 7(1): 265−269. doi: 10.1039/C0SM00731E |
[37] | YANG J, DUAN J, FORNASIERO D, et al. Very small bubble formation at the solid−water interface[J]. The Journal of Physical Chemistry B, 2003, 107(25): 6139−6147. doi: 10.1021/jp0224113 |
[38] | CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64−70. doi: 10.1016/j.minpro.2015.02.010 |
[39] | DUCKER W A. Contact angle and stability of interfacial nanobubbles[J]. Langmuir, 2009, 25(16): 8907−8910. doi: 10.1021/la902011v |
[40] | PETSE N D, SHELL M S, LEAL L G. Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence[J]. Physical Review E, 2013, 88(1): 010402. doi: 10.1103/PhysRevE.88.010402 |
[41] | PENG H, BIRKETT G R, NGUYEN A V. Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid−water interface[J]. Langmuir, 2013, 29(49): 15266−15274. doi: 10.1021/la403187p |
[42] | MA F Y, ZHANG P, TAO D P. Surface nanobubble characterization and its enhancement mechanisms for fine−particle flotation: A review[J]. International Journal of Minerals Metallurgy and Materials, 29(4): 727−738. |
[43] | SONG B, WALCZYK W, SCHOHHERR H. Contact angles of surface nanobubbles on mixed self-assembled monolayers with systematically varied macroscopic wettability by atomic force microscopy[J]. Langmuir, 2011, 27(13): 8223−8232. doi: 10.1021/la2014896 |
[44] | YANG S, DAMMER S M, BREMOND N, et al. Characterization of nanobubbles on hydrophobic surfaces in water[J]. Langmuir, 2007, 23(13): 7072−7077. doi: 10.1021/la070004i |
[45] | ZHANG L J, ZHANG X H, ZHANG Y, et al. The length scales for stable gas nanobubbles at liquid/solid surfaces[J]. Soft Matter, 2010, 6(18): 4515−4519. doi: 10.1039/c0sm00243g |
[46] | ZHANG X H, CHAN D Y C, WANG D Y, et al. Stability of Interfacial nanobubbles[J]. Langmuir, 2013, 29(4): 1017−1023. doi: 10.1021/la303837c |
[47] | JOHNSON D J, S. MALEK A A, Al−RASHID B A M, et al. Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment[J]. Journal of Membrane Science, 2012, 389: 486−498. doi: 10.1016/j.memsci.2011.11.023 |
[48] | DITSCHERLEIN L, FRITZSCHEA J, PEUKER U A. Study of nanobubbles on hydrophilic and hydrophobic aluminasurfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 497: 242−250. |
[49] | XU C L, PENG S H, QIAO G G, et al. Nanobubble formation on a warmer substrate[J]. Soft Matter, 2014, 10(39): 7857−7864. doi: 10.1039/C4SM01025F |
[50] | PARKER J L, LAESSON P M, ATTARD P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34): 8468−8480. doi: 10.1021/j100085a029 |
[51] | HAMPTON M A, NGUYEN A V. Nanobubbles and the nanobubble bridging capillary force[J]. Advances in Colloid and Interface Science, 2010, 154(1/2): 30−55. |
[52] | ISRAELACHVIL J, PASHLEY R. The hydrophobic interaction is long range, decaying exponentially with distance[J]. Nature, 1982, 300(5890): 341−342. doi: 10.1038/300341a0 |
[53] | WANG X, YUAN S, LIN J, et al. Nanobubble-enhanced flotation of ultrafifine molybdenite and the associated mechanism[J]. Journal of Molecular Liquids, 2022, 346: 118312. doi: 10.1016/j.molliq.2021.118312 |
[54] | ZHOU W G, CHEN H, OU L M, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003 |
[55] | 马芳源. 石墨矿纳米气泡高效浮选及其机理研究[D]. 徐州: 中国矿业大学, 2021. MA F Y. Study on high-efficiency nanobubble flotation of graphite ore and its mechanisms[D]. Xuzhou: China University of Mining and Technology, 2021. |
[56] | STOCKELHUBER K W, RADOEV B, WNGER A, et al. Rupture of wetting films caused by nanobubbles[J]. Langmuir, 2004, 20(1): 164−168. doi: 10.1021/la0354887 |
[57] | SIMONSEN A C, HANSEN P L, KLOSGEN B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface[J]. Journal of Colloid and Interface Science, 2004, 273: 291−299. doi: 10.1016/j.jcis.2003.12.035 |
Principle of nanobubble formation process
Contact angle of water on the surface of muscovite (A) Surface of fresh Muscovite; (B) Surface of muscovite pretreated with 5×10−5 mol/L dodecylamine; (C) Surface of muscovite pretreated with 5×10−4 mol/L dodecylamine [26]
Interfacial nanobubbles under AFM [32]
Effect of time on nanobubble concentration[33]
Morphological differences between surface nanobubbles (left) and macrobubbles (right)
AFM image of nanobubbles on hydrophobic surfaces with contact angle of 165° [47]
Formation process of bridging effect of nanobubble between hydrophobic surfaces [51]
Nanobubble Enhanced flotation process of ultrafine particles [1]
AFM image of the effect of nanobubbles on wetting film rupture [55]