Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 2
Article Contents

MENG Lingxuan, ZHAO Tonglin, FAN Zhaolin, MA Fangyuan, LIU Xinyue, ZHANG Di, ZHANG Mingze, LI Xiangwei, LI Mingjiao. Research Status of Nanobubble Enhanced Flotation Mechanism of Ultrafine Particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 162-168. doi: 10.13779/j.cnki.issn1001-0076.2023.07.002
Citation: MENG Lingxuan, ZHAO Tonglin, FAN Zhaolin, MA Fangyuan, LIU Xinyue, ZHANG Di, ZHANG Mingze, LI Xiangwei, LI Mingjiao. Research Status of Nanobubble Enhanced Flotation Mechanism of Ultrafine Particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 162-168. doi: 10.13779/j.cnki.issn1001-0076.2023.07.002

Research Status of Nanobubble Enhanced Flotation Mechanism of Ultrafine Particles

More Information
  • Nanobubble flotation is one of the effective technologies for recovering fine minerals, which has the advantages of energy saving, convenience and low drug consumption. At present, nanobubble flotation is applied to a variety of minerals, such as coal, graphite, hematite, phosphate rock. However, there are still many gaps in the theoretical research of nanobubbles, such as the stability mechanism, dynamic equilibrium, three−phase wire pinning hypothesis. It should be noted that the classical DLVO theory also fails to explain the super-stable nanobubbles. The properties of nanobubbles and the mechanism of enhanced flotation were described from the aspects, including nanbubble formation surface contact angle, preferential selective nucleation, capillary mechanism and nanobubble stability. On this basis, the research blank of nanobubble enhanced flotation mechanism of ultrafine particles was summarized, which pointed out the direction for the theoretical research of ultrafine particles nanobubble flotation.

  • 加载中
  • [1] MA F Y, TAO D P, TAO Y J. Effects of nanobubbles in column flotation of Chinese sub−bituminous coal[J]. International Journal of Coal Preparation and Utilization, 2022, 42(4): 1126−1142. doi: 10.1080/19392699.2019.1692340

    CrossRef Google Scholar

    [2] SUN Q Y, YIN W Z, LI D, et al. Improving the sulfidation−flotation of fine cuprite by hydrophobic flocculation pretreatment[J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(11): 1256−1262. doi: 10.1007/s12613-018-1678-4

    CrossRef Google Scholar

    [3] HAOH, LI L, SOMASUNDARAN P, et al. Adsorption of Pregelatinized Starch for Selective Flocculation and Flotation of Fine Siderite[J]. Langmuir, 2019, 35(21): 6878−6887. doi: 10.1021/acs.langmuir.9b00669

    CrossRef Google Scholar

    [4] MEDEIRONS A R S, BALTAR C A M. Importance of collector chain length in flotation of fine particles[J]. Minerals Engineering, 2018, 122: 179−184. doi: 10.1016/j.mineng.2018.03.008

    CrossRef Google Scholar

    [5] 廖世双, 欧乐明, 周伟光. 空化过程微纳米气泡性质及其对细粒矿物浮选的影响[J]. 中国有色金属学报, 2019, 29(7): 1567−1574. doi: 10.19476/j.ysxb.1004.0609.2019.07.25

    CrossRef Google Scholar

    LIAO S S, OU L M, ZHOU W G. Micro-nano bubbles properties induced by hydrodynamic cavitation and their influences on fine mineral flotation[J]. Chinese Journal of Nonferrous Metals, 2019, 29(7): 1567−1574. doi: 10.19476/j.ysxb.1004.0609.2019.07.25

    CrossRef Google Scholar

    [6] 冯其明, 周伟光, 石晴. 纳米气泡的形成及其对微细粒矿物浮选的影响[J]. 中南大学学报(自然科学版), 2017, 48(1): 9−15.

    Google Scholar

    FENG Q M, ZHOU W G, SHI Q. Formation of nano-bubbles and their influences on ultrafine mineral flotation[J]. Journal of Central South University (Natural Science Edition), 2017, 48(1): 9−15.

    Google Scholar

    [7] MA F Y, TAO D P, TAO Y J, et al. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation[J]. International Journal of Mining Science and Technology, 2021, 31(6): 1063−1074. doi: 10.1016/j.ijmst.2021.06.005

    CrossRef Google Scholar

    [8] LI C W, XU M, XING Y, et al. Efficient separation of fine coal assisted by surface nanobubbles[J]. Separation and Purification Technology, 2020, 249: 117163. doi: 10.1016/j.seppur.2020.117163

    CrossRef Google Scholar

    [9] 陶有俊, 刘谦, TAO D, 等. 纳米泡提高细粒煤浮选效果的研究[J]. 中国矿业大学学报, 2009, 38(6): 820−823. doi: 10.3321/j.issn:1000-1964.2009.06.012

    CrossRef Google Scholar

    TAO Y J, LIU Q, TAO D, et al. Enhancing efficiency of fine coal flotation by picobubbles[J]. Journal of China University of Mining & Technology, 2009, 38(6): 820−823. doi: 10.3321/j.issn:1000-1964.2009.06.012

    CrossRef Google Scholar

    [10] TAO D P, WU Z X, SOBHY A, et al. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms[J]. Powder Technology, 2021, 379: 12−25. doi: 10.1016/j.powtec.2020.10.040

    CrossRef Google Scholar

    [11] LI M, BUSSONNIERE A, BRONSON M, et al. Study of venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles[J]. Minerals Engineering, 2019, 132: 268−74. doi: 10.1016/j.mineng.2018.11.001

    CrossRef Google Scholar

    [12] ZHANG X Y, WANG Q S, WU Z X, et al. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(2): 152−161. doi: 10.1007/s12613-019-1936-0

    CrossRef Google Scholar

    [13] LI C W, LI X, XU M, et al. Effect of ultrasonication on the flotation of fine graphite particles: Nanobubbles or not[J]. Ultrasonics Sonochemistry, 2020, 69: 105243. doi: 10.1016/j.ultsonch.2020.105243

    CrossRef Google Scholar

    [14] HAIN N, HANDSCHUH−WANG S, WESNER D, et al. Multimodal microscopy-based identification of surface nanobubbles[J]. Journal of Colloid and Interface Science, 2019, 547: 162−170. doi: 10.1016/j.jcis.2019.03.084

    CrossRef Google Scholar

    [15] GUO W, SHAN H, GUAN M, et al. Investigation on nanobubbles on graphite substrate produced by the water–NaCl solution replacement[J]. Surface Science, 2012, 606(17/18): 1462−1466. doi: 10.1016/j.susc.2012.05.018

    CrossRef Google Scholar

    [16] ZHANG F, XING Y, CHANG G, et al. Enhanced lignite flotation using interfacial nanobubbles based on temperature difference method[J]. Fuel, 2021, 293: 120313. doi: 10.1016/j.fuel.2021.120313

    CrossRef Google Scholar

    [17] ZHOU L, WANG X, HYUN−JOON S, et al. Surface nanobubbles produced by cold water investigated using scanning transmission x−ray microscopy[J]. Microscopy and Microanalysis, 2018, 24(S2): 470−471. doi: 10.1017/S1431927618014587

    CrossRef Google Scholar

    [18] OWENS C L, SCHACH E, HEINIG T, et al. Surface nanobubbles on the rare earth fluorcarbonate mineral synchysite[J]. Journal of Colloid and Interface Science, 2019, 552: 66−71. doi: 10.1016/j.jcis.2019.05.014

    CrossRef Google Scholar

    [19] ZHANG L J, ZHANGY, ZHANG X, et al. Electrochemically controlled formation and growth of hydrogen nanobubbles[J]. Langmuir, 2006, 22(19): 8109−8113. doi: 10.1021/la060859f

    CrossRef Google Scholar

    [20] 刘玉龙, 金诚, 刘欲文, 等. 纳米气泡电化学研究进展[J]. 中国科学:化学, 2021, 51(3): 310−322.

    Google Scholar

    LIU Y L, JIN C, LIU Y W, et al. Recent process in gas nanobubble electrochemistry[J]. Scientia Sinica(Chimica), 2021, 51(3): 310−322.

    Google Scholar

    [21] CALAGAROTO S, WILBERG K Q, RUBIO, J. On the nanobubbles interfacial properties and future applications in flotation[J]. Minerals Engineering, 2014, 60: 33−40. doi: 10.1016/j.mineng.2014.02.002

    CrossRef Google Scholar

    [22] XIAO W, WANG X X, ZHOU L M, et al. The influence of mixing and nano-solids on the formation of nanobubbles[J]. The Journal of Physical Chemistry B, 2019, 123(1): 317−323. doi: 10.1021/acs.jpcb.8b11385

    CrossRef Google Scholar

    [23] ZHANG F F, YANG H C, GUI X H, et al. Interfacial nanobubbles on different hydrophobic surfaces and their effect on the interaction of inter-particles[J]. Applied Surface Science, 2022, 582: 152184.

    Google Scholar

    [24] SOBHY A, TAO D. Nanobubble column flotation of fine coal particles and associated fundamentals[J]. International Journal of Mineral Processing, 2013, 124: 109−116. doi: 10.1016/j.minpro.2013.04.016

    CrossRef Google Scholar

    [25] 张睿毅, 陈岚, 葛广路. 体相纳米气泡的消除与尺寸调控研究进展[J]. 环境工程技术学报, 2022, 12(4): 1310−1316. doi: 10.12153/j.issn.1674-991X.20210853

    CrossRef Google Scholar

    ZHANG R Y, CHEN L, GE G L. Research progress on elimination and size control of bulk nanobubbles[J]. Journal of Environmental Engineering Technology, 2022, 12(4): 1310−1316. doi: 10.12153/j.issn.1674-991X.20210853

    CrossRef Google Scholar

    [26] ZHOU W G, WU C N, LV H Z, et al. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation[J]. Applied Surface Science, 2020, 508(1): 145282.

    Google Scholar

    [27] DING S H, XING Y W, ZHENG X, et al. New insights into the role of surface nanobubbles in bubble−particle detachment[J]. Langmuir, 2020, 36(16): 4339−4346. doi: 10.1021/acs.langmuir.0c00359

    CrossRef Google Scholar

    [28] TANG C L, MA F Y, WU T Y, ET AL. Study on surface physical and chemical mechanism of nanobubble enhanced flotation of fine graphite[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 389−396.

    Google Scholar

    [29] 张立娟, 方海平, 胡钧. 纳米气泡的科学之谜[J]. 物理, 2018, 47(9): 574−583. doi: 10.7693/wl20180906

    CrossRef Google Scholar

    ZHANG L J, FANG H P, HUN J. Scientific mysteries of nanobubbles[J]. Physics, 2018, 47(9): 574−583. doi: 10.7693/wl20180906

    CrossRef Google Scholar

    [30] EPSTEIN P S, PLESSET M S. On the stability of gas bubbles in liquid−gas solutions[J]. Journal of Chemical physics, 1950, 18(11): 1505−1509. doi: 10.1063/1.1747520

    CrossRef Google Scholar

    [31] ISHIDA N, INOUE T, MIYAHARA M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping−mode atomic force microscopy[J]. Langmuir, 2000, 16(16): 6377−6380. doi: 10.1021/la000219r

    CrossRef Google Scholar

    [32] BORKENT B M, BEER S D, MUGELE F, et al. On the shape of surface nanobubbles[J]. Langmuir, 2010, 26(1): 260−268. doi: 10.1021/la902121x

    CrossRef Google Scholar

    [33] 张旭瑜. 纳米气泡表征及其在赤铁矿反浮选中的应用[D]. 鞍山: 辽宁科技大学, 2020.

    Google Scholar

    ZHANG X Y. Characterization of nanobubbles and its application in reverse flotation of hematite[D]. Anshan: University of Science and Technology Liaoning, 2020.

    Google Scholar

    [34] ETCHEPARE R, OLIVEIRA H, NICKNIG M, et al. Nanobubbles: Generation using a multiphase pump, properties and features in flotation[J]. Minerals Engineering, 2017, 112: 19−26. doi: 10.1016/j.mineng.2017.06.020

    CrossRef Google Scholar

    [35] LIU Y W, WANG J J, ZHANG X R, et al. Contact line pinning and the relationship between nanobubbles and substrates[J]. Journal of Chemical Physics, 2014, 140(5): 054705. doi: 10.1063/1.4863448

    CrossRef Google Scholar

    [36] BROTCHIE A, ZHANG X H. Response of interfacial nanobubbles to ultrasound irradiation[J]. Soft Matter, 2011, 7(1): 265−269. doi: 10.1039/C0SM00731E

    CrossRef Google Scholar

    [37] YANG J, DUAN J, FORNASIERO D, et al. Very small bubble formation at the solid−water interface[J]. The Journal of Physical Chemistry B, 2003, 107(25): 6139−6147. doi: 10.1021/jp0224113

    CrossRef Google Scholar

    [38] CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64−70. doi: 10.1016/j.minpro.2015.02.010

    CrossRef Google Scholar

    [39] DUCKER W A. Contact angle and stability of interfacial nanobubbles[J]. Langmuir, 2009, 25(16): 8907−8910. doi: 10.1021/la902011v

    CrossRef Google Scholar

    [40] PETSE N D, SHELL M S, LEAL L G. Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence[J]. Physical Review E, 2013, 88(1): 010402. doi: 10.1103/PhysRevE.88.010402

    CrossRef Google Scholar

    [41] PENG H, BIRKETT G R, NGUYEN A V. Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid−water interface[J]. Langmuir, 2013, 29(49): 15266−15274. doi: 10.1021/la403187p

    CrossRef Google Scholar

    [42] MA F Y, ZHANG P, TAO D P. Surface nanobubble characterization and its enhancement mechanisms for fine−particle flotation: A review[J]. International Journal of Minerals Metallurgy and Materials, 29(4): 727−738.

    Google Scholar

    [43] SONG B, WALCZYK W, SCHOHHERR H. Contact angles of surface nanobubbles on mixed self-assembled monolayers with systematically varied macroscopic wettability by atomic force microscopy[J]. Langmuir, 2011, 27(13): 8223−8232. doi: 10.1021/la2014896

    CrossRef Google Scholar

    [44] YANG S, DAMMER S M, BREMOND N, et al. Characterization of nanobubbles on hydrophobic surfaces in water[J]. Langmuir, 2007, 23(13): 7072−7077. doi: 10.1021/la070004i

    CrossRef Google Scholar

    [45] ZHANG L J, ZHANG X H, ZHANG Y, et al. The length scales for stable gas nanobubbles at liquid/solid surfaces[J]. Soft Matter, 2010, 6(18): 4515−4519. doi: 10.1039/c0sm00243g

    CrossRef Google Scholar

    [46] ZHANG X H, CHAN D Y C, WANG D Y, et al. Stability of Interfacial nanobubbles[J]. Langmuir, 2013, 29(4): 1017−1023. doi: 10.1021/la303837c

    CrossRef Google Scholar

    [47] JOHNSON D J, S. MALEK A A, Al−RASHID B A M, et al. Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment[J]. Journal of Membrane Science, 2012, 389: 486−498. doi: 10.1016/j.memsci.2011.11.023

    CrossRef Google Scholar

    [48] DITSCHERLEIN L, FRITZSCHEA J, PEUKER U A. Study of nanobubbles on hydrophilic and hydrophobic aluminasurfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 497: 242−250.

    Google Scholar

    [49] XU C L, PENG S H, QIAO G G, et al. Nanobubble formation on a warmer substrate[J]. Soft Matter, 2014, 10(39): 7857−7864. doi: 10.1039/C4SM01025F

    CrossRef Google Scholar

    [50] PARKER J L, LAESSON P M, ATTARD P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34): 8468−8480. doi: 10.1021/j100085a029

    CrossRef Google Scholar

    [51] HAMPTON M A, NGUYEN A V. Nanobubbles and the nanobubble bridging capillary force[J]. Advances in Colloid and Interface Science, 2010, 154(1/2): 30−55.

    Google Scholar

    [52] ISRAELACHVIL J, PASHLEY R. The hydrophobic interaction is long range, decaying exponentially with distance[J]. Nature, 1982, 300(5890): 341−342. doi: 10.1038/300341a0

    CrossRef Google Scholar

    [53] WANG X, YUAN S, LIN J, et al. Nanobubble-enhanced flotation of ultrafifine molybdenite and the associated mechanism[J]. Journal of Molecular Liquids, 2022, 346: 118312. doi: 10.1016/j.molliq.2021.118312

    CrossRef Google Scholar

    [54] ZHOU W G, CHEN H, OU L M, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003

    CrossRef Google Scholar

    [55] 马芳源. 石墨矿纳米气泡高效浮选及其机理研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    MA F Y. Study on high-efficiency nanobubble flotation of graphite ore and its mechanisms[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [56] STOCKELHUBER K W, RADOEV B, WNGER A, et al. Rupture of wetting films caused by nanobubbles[J]. Langmuir, 2004, 20(1): 164−168. doi: 10.1021/la0354887

    CrossRef Google Scholar

    [57] SIMONSEN A C, HANSEN P L, KLOSGEN B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface[J]. Journal of Colloid and Interface Science, 2004, 273: 291−299. doi: 10.1016/j.jcis.2003.12.035

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(105) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint