Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 2
Article Contents

FENG Yu, GAO Yongjun, LUO Xudong, LI Xinwei, WANG Lin, WU Feng. Study on the Properties of Magnesia Zirconia Composite Materials Synthesized from Different Grades of Magnesite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 154-161. doi: 10.13779/j.cnki.issn1001-0076.2023.02.024
Citation: FENG Yu, GAO Yongjun, LUO Xudong, LI Xinwei, WANG Lin, WU Feng. Study on the Properties of Magnesia Zirconia Composite Materials Synthesized from Different Grades of Magnesite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 154-161. doi: 10.13779/j.cnki.issn1001-0076.2023.02.024

Study on the Properties of Magnesia Zirconia Composite Materials Synthesized from Different Grades of Magnesite

More Information
  • The samples of magnesia zirconia composite materials were prepared with three kinds of different grades of magnesite, namely Haicheng grade I magnesite, Haicheng grade II magnesite and Xiuyan II grade magnesite (MgCO3) and desilication zirconium (ZrO2) as raw materials in order to produce substitute for magnesia−chromite brick of RH refining furnace. The bulk density, apparent porosity, thermal shock resistance and phase composition of the samples were tested. The microstructure of the samples was analyzed. The effects of different sintering temperatures on the sintering properties and thermal shock resistance of magnesia zirconia composite were investigated. The results show that the bulk density was increased, the apparent porosity was reduced, and the linear shrinkage was increased with the temperature increasing. The maximum bulk density of the magnesia zirconia composite prepared with Xiuyan Grade II magnesite and desiliconized zirconia fired at 1700 ℃ was 3.26 g∙cm−3. The minimum apparent porosity of the magnesia zirconia composite prepared with Haicheng Grade II magnesite and desiliconized zirconia fired at 1700 ℃ was 5.69%. The c−ZrO2 solid solution (Zr0.875Mg0.125O1.875) was formed from three different grades of magnesite and ZrO2. The impurities of SiO2 and CaO in magnesite were combined with MgO to form low melting point phase, which increased the density of samples and promoted sintering; The CaZrO3 and c−ZrO2 (Zr0.8Ca0.2O1.8Zr0.8) were formed at 1700 ℃ from the magnesia zirconia composite prepared from Xiuyan Grade II magnesite and desiliconized zirconia; The mismatch of the thermal expansion coefficients of CaZrO3 and c−ZrO2 with periclase resulted in microcrack toughening and ZrO2 phase transformation toughening during the cooling process, which made the magnesia zirconia composite sample prepared from Xiuyan Grade II magnesite and desiliconized zirconia at 1700 ℃ have the best thermal shock resistance.

  • 加载中
  • [1] CHEN S L, LIN Y, ZHONG Q F, et al. Corrosion resistance mechanism of MgO-ZrO2 brick in RH degasser slag[J]. Advanced Materials Research, 2012, 43(5): 549−554.

    Google Scholar

    [2] 朱新伟, 邱文冬, 梁永和, 等. 电熔镁锆砂加入量对RH精炼炉用刚玉-尖晶石浇注料性能的影响[J]. 耐火材料, 2013, 47(3): 190−193. doi: 10.3969/j.issn.1001-1935.2013.03.009

    CrossRef Google Scholar

    ZHU X W, QIU W D, LIANG Y H, et al. Influence of fused MgO-ZrO2 addition on properties of corundum-spinel castables for RH degassers[J]. Refractories, 2013, 47(3): 190−193. doi: 10.3969/j.issn.1001-1935.2013.03.009

    CrossRef Google Scholar

    [3] 凌永一, 王珍, 张婧, 等. MgO-ZrO2质耐火材料研究进展[J]. 耐火材料, 2021, 55(1): 81−88.

    Google Scholar

    LING Y Y, WANG Z, ZHANG J, et al. Research progress of MgO-ZrO2 refractories[J]. Refractories, 2021, 55(1): 81−88.

    Google Scholar

    [4] KUSIOROWSKI R, WOJSA J, PSIUK B, et al. Influence of zirconia addition on the properties of magnesia refractories[J]. Ceram Int, 2016, 42(9): 11373−11386. doi: 10.1016/j.ceramint.2016.04.065

    CrossRef Google Scholar

    [5] 郭玉香, 栾舰, 田凤仁. 锆英石对镁砂烧结性及其制品性能的影响[J]. 耐火材料, 2001, 35(5): 281−282.

    Google Scholar

    GUO Y X, LUAN J, TIAN F R. Effect of ZrSiO4 on sintering of magnesia and properties of product containing magnesia[J]. Refractories, 2001, 35(5): 281−282.

    Google Scholar

    [6] 李亚芾, 付亮亮, 白浩隆, 等. 菱镁矿浮选尾矿直接合成同时制备镁橄榄石和镁砂研究[J]. 化工学报, 2022, 73(8): 3679−3687.

    Google Scholar

    LI Y F, FU L L, BAI H L, et al. The simultaneous synthesis of high-quality forsterite and sintered magnesia from magnesite flotation tailings[J]. CIESC Journal, 2022, 73(8): 3679−3687.

    Google Scholar

    [7] 郗悦, 代淑娟, 张作金, 等. 反浮选法提纯低品位菱镁矿研究进展[J]. 矿产综合利用, 2020(2): 29−36.

    Google Scholar

    XI Y, DAI S J, ZHANG Z J, et al. Research progress in purification of low-grade magnesite by reverse flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 29−36.

    Google Scholar

    [8] 徐勇强, 张真兴, 白雪杰, 等. 菱镁矿石的分选提纯及材料制备研究进展[J]. 矿产保护与利用, 2022, 42(2): 107−113.

    Google Scholar

    XU Y Q, ZHANG Z X, BAI X J, et al. Research progress on purification and material preparation of magnesite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 107−113.

    Google Scholar

    [9] ZOU Y, GU H, HUANG A, et al. Fabrication and properties of in situ intergranular CaZrO3 modified microporous magnesia aggregates[J]. Ceramics International, 2020, 46(10): 16956−16965. doi: 10.1016/j.ceramint.2020.03.279

    CrossRef Google Scholar

    [10] 刘辉敏, 刘缙. 氧化锆对铬刚玉浇注料烧结及抗热震性能的影响[J]. 硅酸盐学报, 2011, 39(3): 436−440.

    Google Scholar

    LIU H M, LIU J. Effect of ZrO2 addition on sintering and thermal shock resistance of Cr2O3-Al2O3 castable[J]. Journal of the Chinese Ceramic Society, 2011, 39(3): 436−440.

    Google Scholar

    [11] NADLER M R, FITZSIMMONS E S. Preparation and properties of calcium zirconate[J]. Journal of the American Ceramic Society, 1955, 38(6): 214−217.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(60) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint