Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 2
Article Contents

LI Xiaokang, ZHANG Ying, GUAN Zhenhao, WU Yu. Research Status and Prospect of Flotation of Fine Scheelite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2023.02.025
Citation: LI Xiaokang, ZHANG Ying, GUAN Zhenhao, WU Yu. Research Status and Prospect of Flotation of Fine Scheelite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2023.02.025

Research Status and Prospect of Flotation of Fine Scheelite

More Information
  • As tungsten resources are being exploited in great quantities, scheelite resources are becoming increasingly "depleted, scattered, and fine". This has brought more attention to the recovery and utilization of micro-fine scheelite. The difficulties encountered in micro-fine scheelite flotation was analyzed, and the research progress on the flotation processes, flotation reagents, and flotation equipments were reviewed. Furthermore, the effects of bubbles, grinding, and the interaction of different particle sizes on fine scheelite flotation were revealed, and the future research focus for fine scheelite flotation was prospected. The review could provide a valuable reference for the flotation and efficient recovery of micro-fine scheelite resources.

  • 加载中
  • [1] 金惠卿, 杨宏. 实现我国钨业外贸转型和产业升级的探讨与政策建议[J]. 中国矿业, 2013, 22(10): 12−15. doi: 10.3969/j.issn.1004-4051.2013.10.003

    CrossRef Google Scholar

    JIN H J, YANG H. Tungsten industry in China's foreign trade restructuring and industrial upgrading explore policy recommendations[J]. China Mining Magazine, 2013, 22(10): 12−15. doi: 10.3969/j.issn.1004-4051.2013.10.003

    CrossRef Google Scholar

    [2] 李仲泽. 中国钨产业高质量发展的思考[J]. 中国钨业, 2021, 36(5): 1−10. doi: 10.3969/j.issn.1009-0622.2021.05.001

    CrossRef Google Scholar

    LI Z Z. Revisiting the high-quality development of China tungsten industry[J]. China Tungsten Industry, 2021, 36(5): 1−10. doi: 10.3969/j.issn.1009-0622.2021.05.001

    CrossRef Google Scholar

    [3] 李小康, 张英, 管侦皓, 等. 白钨矿浮选药剂研究进展[J]. 矿产保护与利用, 2022, 42(2): 14−24.

    Google Scholar

    LI X K, ZHANG Y, GUAN Z H, et al. Research progress of scheelite flotation reagents[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 14−24.

    Google Scholar

    [4] 高玉德. 我国钨矿资源特点及选矿工艺研究进展[J]. 中国钨业, 2016, 31(5): 35−39.

    Google Scholar

    GAO Y D. Tungsten resource characteristics of China and research advances of tungsten processing technologies[J]. China Tungsten Industry, 2016, 31(5): 35−39.

    Google Scholar

    [5] 孙伟, 卫召, 韩海生, 等. 钨矿浮选化学及其实践[J]. 金属矿山, 2021(1): 24−41.

    Google Scholar

    SUN W, WEI Z, HAN H S, et al. Flotation chemistry of tungsten ore and its practice[J]. Metal Mine, 2021(1): 24−41.

    Google Scholar

    [6] 李淑菲, 李强. 微细粒白钨矿浮选研究现状[J]. 有色冶金节能, 2019, 35(3): 12−15+28. doi: 10.3969/j.issn.1008-5122.2019.03.004

    CrossRef Google Scholar

    LI S F, LI Q. Research status on flotation of micro-grained scheelite[J]. Energy Saving of Nonferrous Metallurgy, 2019, 35(3): 12−15+28. doi: 10.3969/j.issn.1008-5122.2019.03.004

    CrossRef Google Scholar

    [7] SHEPETA E D, SAMATOVA L A, KONDRAT'EV S A. Kinetics of calcium minerals flotation from scheelite-carbonate ores[J]. Journal of Mining Science, 2012, 48(4): 746−753. doi: 10.1134/S106273914804020X

    CrossRef Google Scholar

    [8] AHMAD HASSANZADEH, MEHDI SAFARI, DUONG H, Hoang, et al. Technological assessments on recent developments in fine and coarse particle flotation systems[J]. Minerals Engineering, 2022, 180: 107509. doi: 10.1016/j.mineng.2022.107509

    CrossRef Google Scholar

    [9] 宁湘菡. 微细粒白钨矿与含钙脉石矿物浮选分离行为研究[D]. 赣州: 江西理工大学, 2020.

    Google Scholar

    NING X H. Study on the flotation separation behavior of fine-grained scheelite and calcareous gangue minerals[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

    Google Scholar

    [10] 罗丽芳. 微细粒白钨矿选择性絮凝行为研究[D]. 赣州: 江西理工大学, 2019.

    Google Scholar

    LUO L F. Study on selective flocculation behavior of fine scheelite[D]. Ganzhou: Jiangxi University of Technology, 2019.

    Google Scholar

    [11] 周凌锋. 细粒浮选设备结构设计原则的研究[J]. 中国钨业, 2005(2): 40−43. doi: 10.3969/j.issn.1009-0622.2005.02.012

    CrossRef Google Scholar

    ZHOU L F. Study on the principle of structural design of fine particle flotation machine[J]. China Tungsten Industry, 2005(2): 40−43. doi: 10.3969/j.issn.1009-0622.2005.02.012

    CrossRef Google Scholar

    [12] ZHANG F F, SUN L J, YANG H C, et al. Recent advances for understanding the role of nanobubbles in particles flotation[J]. Advances in Colloid and Interface Science, 2021, 291: 102403. doi: 10.1016/j.cis.2021.102403

    CrossRef Google Scholar

    [13] 杨俊彦. 微细粒白钨矿疏水聚团的形成机理及在白钨矿碱浸渣中的应用[D]. 北京: 北京科技大学, 2020.

    Google Scholar

    YANG J Y. Formation mechanism of hydrophobic agglomerate of ultrafine scheelite and application in scheelite residue after NaOH leaching[D]. Beijing: University of Science and Technology Beijing, 2020.

    Google Scholar

    [14] 陈文胜, 付君浩, 韩海生, 等. 微细粒矿物分选技术研究进展[J]. 矿产保护与利用, 2020, 40(4): 134−145.

    Google Scholar

    CHEN W S, FU J H, HAN H S, et al. Advance in the separation of ultrafine minerals[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 134−145.

    Google Scholar

    [15] 魏宗武, 高玚, 杨梅金, 等. 微细粒锡石的选择性絮凝浮选[J]. 矿业研究与开发, 2022, 42(1): 42−46.

    Google Scholar

    WEI Z W, GAO Y, YANG M J, et al. Selective flocculation flotation of fine cassiterite[J]. Mining research and development, 2022, 42(1): 42−46.

    Google Scholar

    [16] 潘庆庆, 彭会清. 用新型絮凝剂PG改善某钨细泥的浮选效果[J]. 金属矿山, 2018(5): 98−102.

    Google Scholar

    PAN Q Q, PENG H Q. Tungsten slime flotation index improvement using a new flocculant PG[J]. Metal Mine, 2018(5): 98−102.

    Google Scholar

    [17] 刘建远, 陈荩. 国外白钨矿的浮选和剪切絮凝[J]. 湖南冶金, 1984(3): 45−48+44.

    Google Scholar

    LIU J Y, CHEN J. Flotation and shear flocculation of scheelite abroad[J]. Hunan Metallurgy, 1984(3): 45−48+44.

    Google Scholar

    [18] 赵佳. 低品位白钨矿泥砂分选新工艺及机理研究[D]. 长沙: 中南大学, 2014.

    Google Scholar

    ZHAO J. Study on a new technology and mechanism of scheelite mud-sand ore sorting[D]. Changsha: Central South University, 2014.

    Google Scholar

    [19] 秦永红, 杨光, 马自飞, 等. 某微细粒级混磁精矿载体浮选试验研究[J]. 金属矿山, 2019(2): 76−80.

    Google Scholar

    QIN Y H, YANG G, MA Z F, et al. Experimental study on carrier flotation of a fine-grained magnetic separation mixed iron concentrate[J]. Metal Mine, 2019(2): 76−80.

    Google Scholar

    [20] 肖骏, 陈代雄. 聚苯乙烯载体浮选微细粒白钨矿研究[J]. 中国钨业, 2015, 30(6): 14−20. doi: 10.3969/j.issn.1009-0622.2015.06.004

    CrossRef Google Scholar

    XIAO J, CHEN D X. Flotation of micro-fine scheelite by applying polystyrene as carrier[J]. China Tungsten Industry, 2015, 30(6): 14−20. doi: 10.3969/j.issn.1009-0622.2015.06.004

    CrossRef Google Scholar

    [21] 沈慧庭, 宫中桂. 白钨矿浮选中方解石的影响及消除影响的方法和机理研究[J]. 湖南有色金属, 1996(2): 36−39.

    Google Scholar

    SHEN H T, GONG Z G. Study on the influence of calcite in scheelite flotation and the method and mechanism to eliminate the influence[J]. Hunan Nonferrous Metals, 1996(2): 36−39.

    Google Scholar

    [22] 王纪镇, 印万忠, 孙忠梅. 碳酸钠对白钨矿自载体浮选的影响及机理[J]. 工程科学学报, 2019, 41(2): 174−180.

    Google Scholar

    WANG J Z, YIN W Z, SUN Z M. Effect and mechanisms of sodium carbonate on the auto-carrier flotation of scheelite[J]. Chinese Journal of Engineering, 2019, 41(2): 174−180.

    Google Scholar

    [23] 李爱民, 卫召, 韩海生, 等. 行洛坑钨矿配合物捕收剂黑白钨混合浮选新工艺生产实践[J]. 金属矿山, 2021(6): 73−79.

    Google Scholar

    LI A M, WEI Z, HAN H S, et al. Production practice of a new mixed flotation process for wolframite and scheelite based on complex collector in Xingluokeng tungsten mine[J]. Metal Mine, 2021(6): 73−79.

    Google Scholar

    [24] 王婷霞, 李健民, 刘坤, 等. 浮选—磁选—重选联合工艺分选某风化型黑白钨细泥研究[J]. 矿产保护与利用, 2021, 41(5): 38−42.

    Google Scholar

    WANG X T, LI J M, LIU K, et al. Experimental study on fine slime dressing of wolframite and scheelite with flotation-magnetic separation- gravity concentration combined process[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 38−42.

    Google Scholar

    [25] 纪道河, 李景超, 马子龙, 等. 柱机联合工艺在湖南某低品位白钨矿浮选中的应用[J]. 矿产保护与利用, 2021, 41(2): 117−122.

    Google Scholar

    JI D H, LI J C, MA Z L, et al. Application of flotation column and machine in the separation of a low grade scheelite ore in Hunan Province[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 117−122.

    Google Scholar

    [26] 孙景敏, 黄业豪, 王誉树. 从小秦岭某浮金尾矿中回收白钨矿的试验研究[J]. 矿业研究与开发, 2018, 38(6): 74−78.

    Google Scholar

    SUN J M, HUANG Y H, WANG Y S. Experimental study on recovering scheelite from a gold flotation tailings in Xiaoqinling area[J]. Mining Research and Development, 2018, 38(6): 74−78.

    Google Scholar

    [27] 冯博, 王鹏程, 王金庆. 油酸钠在微细粒白钨矿浮选中的作用[J]. 有色金属工程, 2015, 5(4): 44−48. doi: 10.3969/j.issn.2095-1744.2015.04.011

    CrossRef Google Scholar

    FENG B, WANG P C, WANG J Q. Functions of sodium oleate in fine grain scheelite flotation[J]. Nonferrous Metals Engineering, 2015, 5(4): 44−48. doi: 10.3969/j.issn.2095-1744.2015.04.011

    CrossRef Google Scholar

    [28] 艾光华, 吴燕玲, 周源, 等. 组合捕收剂从含钙矿物浮选体系中回收微细粒白钨矿[J]. 有色金属工程, 2014, 4(6): 44−47. doi: 10.3969/j.issn.2095-1744.2014.06.014

    CrossRef Google Scholar

    AI G H, WU Y L. ZHOU Y, et al. Combined collectors recover fine scheelite from flotation system containing calcium[J]. Nonferrous Metals Engineering, 2014, 4(6): 44−47. doi: 10.3969/j.issn.2095-1744.2014.06.014

    CrossRef Google Scholar

    [29] 彭志兵, 张博, 张平, 等. 某半风化钨矿的选矿试验研究[J]. 有色金属(选矿部分), 2020(4): 38−42+48.

    Google Scholar

    PENG Z B, ZHANG B, ZHANG P, et al. Experimental study on Beneficiation of a semi-weathered tungsten ore[J]. Nonferrous Metals (Mineral Processing Section), 2020(4): 38−42+48.

    Google Scholar

    [30] 刘旭. 微细粒白钨矿浮选行为研究[D]. 长沙: 中南大学, 2010.

    Google Scholar

    LIU X. Research on flotation behavior of fine scheelite [D]. Changsha: Central South University, 2010.

    Google Scholar

    [31] 朴永超, 朱阳戈, 王中明. 从重选尾矿中浮选回收微细粒白钨矿试验研究[J]. 矿冶, 2014, 23(4): 20−23+27. doi: 10.3969/j.issn.1005-7854.2014.04.005

    CrossRef Google Scholar

    PIAO Y C, ZHU Y G, WANG Z M. Experimental study on recovery of fine scheelite from gravity tailings by flotation[J]. Mining and Metallurgy, 2014, 23(4): 20−23+27. doi: 10.3969/j.issn.1005-7854.2014.04.005

    CrossRef Google Scholar

    [32] 胡岳华, 韩海生, 田孟杰, 等. 苯甲羟肟酸铅金属有机配合物在氧化矿浮选中的作用机理及其应用[J]. 矿产保护与利用, 2018(1): 42−47+53.

    Google Scholar

    HU Y H, HAN H S, TIAN M J, et al. The application of metal-coordinated complexes in the flotation of oxide minerals and fundamental research of the adsorption mechanism[J]. Conservation and Utilization of Mineral Resources, 2018(1): 42−47+53.

    Google Scholar

    [33] FU J H, HAN H S, WEI Z, et al. Recovery of ultrafine scheelite particles by magnetic seeding flocculation and its mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127266. doi: 10.1016/j.colsurfa.2021.127266

    CrossRef Google Scholar

    [34] 张光斌, 艾光华. 某白钨浮选尾矿钨再回收利用试验研究[J]. 有色金属(选矿部分), 2018(1): 65−69.

    Google Scholar

    ZHANG G B, AI G H. Experimental study on tungsten recovery and utilization of flotation tailings of scheelite[J]. Nonferrous Metals(Mineral Processing Section), 2018(1): 65−69.

    Google Scholar

    [35] 邱廷省, 陈向, 温德新, 等. 某难选白钨矿浮选工艺及流程试验研究[J]. 有色金属科学与工程, 2013, 4(5): 48−53. doi: 10.13264/j.cnki.ysjskx.2013.05.007

    CrossRef Google Scholar

    QIU T S, CHEN X, WEN D X, et al. Experimental study on flotation process and process of a refractory scheelite[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 48−53. doi: 10.13264/j.cnki.ysjskx.2013.05.007

    CrossRef Google Scholar

    [36] 杨世中, 朱文龙, 张卫星, 等. 某浮金尾矿回收低品位微细粒级白钨矿试验[J]. 现代矿业, 2013, 29(6): 100−101+111. doi: 10.3969/j.issn.1674-6082.2013.06.035

    CrossRef Google Scholar

    YANG S Z, ZHU W L, ZHANG W X, et al. Experimental study on recovery of low-grade micro-fine scheelite from gold floating tailings[J]. Modern Mining, 2013, 29(6): 100−101+111. doi: 10.3969/j.issn.1674-6082.2013.06.035

    CrossRef Google Scholar

    [37] WANG Y H, PAN G C, CHU H R, et al. Flotation separation of scheelite from calcite using sulfonated naphthalene–formaldehyde condensate as depressant[J]. Minerals, 2022, 12: 517.

    Google Scholar

    [38] 阳华玲, 朱超英, 易峦, 等. 微细粒浮选柱的研究现状及其新进展[J]. 湖南有色金属, 2014, 30(5): 11−16. doi: 10.3969/j.issn.1003-5540.2014.05.004

    CrossRef Google Scholar

    YANG H L, ZHU C Y, YI L, et al. Research present situation and new progress of flotation column for fine paticles[J]. Hunan Nonferrous Metals, 2014, 30(5): 11−16. doi: 10.3969/j.issn.1003-5540.2014.05.004

    CrossRef Google Scholar

    [39] 黄光耀, 冯其明, 欧乐明, 等. 浮选柱法从浮选尾矿中回收微细粒级白钨矿的研究[J]. 稀有金属, 2009, 33(2): 263−266. doi: 10.3969/j.issn.0258-7076.2009.02.025

    CrossRef Google Scholar

    HUANG G Y, FENG Q M, OU L M, et al. Recovery of fine scheelite from flotation tailings by column flotation[J]. Rare Metal, 2009, 33(2): 263−266. doi: 10.3969/j.issn.0258-7076.2009.02.025

    CrossRef Google Scholar

    [40] 周强, 曹亦俊, 李小兵, 等. 旋流—静态微泡浮选柱分选某白钨矿的半工业试验研究[J]. 有色金属(选矿部分), 2011, 1: 39−42.

    Google Scholar

    ZHOU Q, CAO Y J, LI X B, et al. Semi-industrial experimental study on the separation of scheelite by cyclone-static microbubble flotation column[J]. Nonferrous Metals(Mineral Processing Section), 2011, 1: 39−42.

    Google Scholar

    [41] 黄光耀. 水平充填介质浮选柱的理论与应用研究[D].长沙: 中南大学,2011.

    Google Scholar

    HUANG G Y. Fundamental Theory Research and Application of Horizontal Baffled Flotation Column[D]. Changsha: Central South University , 2011.

    Google Scholar

    [42] 王超, 孙春宝, 寇珏. 浮选过程中颗粒-气泡黏附作用机理及研究进展[J]. 工程科学学报, 2018, 40(12): 1423−1433.

    Google Scholar

    WANG C, SUN C B, KOU J. Mechanism and research progress of the bubble- particle attachment in flotation[J]. Chinese Journal of Engineering, 2018, 40(12): 1423−1433.

    Google Scholar

    [43] W BO, PENG YONGJUN. The effect of saline water on mineral flotation- A critical review[J]. Minerals Engineering, 2014, 66/67/68: 13−14. doi: 10.1016/j.mineng.2014.04.017

    CrossRef Google Scholar

    [44] 马亮. 浮选过程中含钙矿物颗粒与气泡的相互作用研究[D]. 长沙: 中南大学, 2011.

    Google Scholar

    MA L. Study on minerals particles containing calcium and bubble interaction[D]. Changsha: Central South University , 2011.

    Google Scholar

    [45] 冯其明, 周伟光, 石晴. 纳米气泡的形成及其对微细粒矿物浮选的影响[J]. 中南大学学报(自然科学版), 2017, 48(1): 9−15.

    Google Scholar

    FENG Q M, ZHOU W G, SHI Q. Formation of nano- bubbles and their influences on ultrafine mineral flotation[J]. Journal of Central South University(Science and Technology), 2017, 48(1): 9−15.

    Google Scholar

    [46] ZHOU W G, CHEN H, OU L M, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003

    CrossRef Google Scholar

    [47] 马利凤, 高淑玲, 孟令国, 等. 浮选气泡及其与颗粒作用研究进展[J]. 金属矿山, 2017(8): 20−26. doi: 10.3969/j.issn.1001-1250.2017.08.004

    CrossRef Google Scholar

    MA L F, GAO S L, MENG L G, et al. Research progress of flotation bubble and its interaction with particles[J]. Metal Mine, 2017(8): 20−26. doi: 10.3969/j.issn.1001-1250.2017.08.004

    CrossRef Google Scholar

    [48] 黄景华. 某白钨矿优化磨矿分级试验研究[J]. 湖南有色金属, 2019, 35(4): 18−21. doi: 10.3969/j.issn.1003-5540.2019.04.005

    CrossRef Google Scholar

    HUANG J H. The experiment on optimization of the grinding classification process[J]. Hu’nan Nonferrous Metals, 2019, 35(4): 18−21. doi: 10.3969/j.issn.1003-5540.2019.04.005

    CrossRef Google Scholar

    [49] 李崇德. 从某铜矿尾矿中重选回收白钨矿的试验研究[J]. 有色金属(选矿部分), 2021(2): 44−48.

    Google Scholar

    LI C D. Experimental study on recovery of scheelite from tailings of a copper mine by gravity concentration[J]. Nonferrous Metals(Mineral Processing Section), 2021(2): 44−48.

    Google Scholar

    [50] 王文东, 戴戈平. 浅析影响浮选工艺的因素和操作[J]. 中国科技投资, 2014(2): 250. doi: 10.3969/j.issn.1673-5811.2014.02.234

    CrossRef Google Scholar

    WANG W D, DAI G P. The factors affecting flotation process and operation are analyzed[J]. Venture Capital, 2014(2): 250. doi: 10.3969/j.issn.1673-5811.2014.02.234

    CrossRef Google Scholar

    [51] 罗溪梅. 含碳酸盐铁矿石浮选体系中矿物的交互影响研究[D]. 沈阳: 东北大学, 2014.

    Google Scholar

    LUO X M. Study on mineral interaction in flotation system of carbonate iron ore[D]. Shenyang: Northeastern University, 2014.

    Google Scholar

    [52] 胡岳华. 矿物浮选[M]. 长沙: 中南大学出版社, 2014.

    Google Scholar

    HU Y H. Mineral flotation[M]. Changsha: Central South University Press, 2014.

    Google Scholar

    [53] 梁菁菁. 白钨矿可浮粒度范围及含钙脉石环境下活化试验研究[D]. 赣州: 江西理工大学, 2017.

    Google Scholar

    LIANG Q Q. Study of scheelite buoyant particle size range and calcium gangue environment activation method[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    Google Scholar

    [54] 王纪镇, 印万忠, 李振. 白钨矿与方解石浮选行为的差异及其机理研究[J]. 矿产保护与利用, 2016(4): 37−40+46. doi: 10.13779/j.cnki.issn1001-0076.2016.04.008

    CrossRef Google Scholar

    WANG J Z, YIN W Z, LI Z. Study on the difference of flotation behavior between scheelite and calcite and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2016(4): 37−40+46. doi: 10.13779/j.cnki.issn1001-0076.2016.04.008

    CrossRef Google Scholar

    [55] YIN W Z, WANG J Z. Effects of particle size and particle interactions on scheelite flotation[J]. Transaction of Nonferrous Metals Society of China, 2014, 24(11): 368.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(83) PDF downloads(10) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint