Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

GUO Kai, ZHANG Guofu, ZHANG Guohua, GUO Zhou, LI Weichao, LIU Wengang. Comparative Study on Floatation of Low Rank Coal Slime by Compound Coal-based Fischer-tropsch Synthetic Oil and Traditional Hydrocarbon Oil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 95-99. doi: 10.13779/j.cnki.issn1001-0076.2023.06.011
Citation: GUO Kai, ZHANG Guofu, ZHANG Guohua, GUO Zhou, LI Weichao, LIU Wengang. Comparative Study on Floatation of Low Rank Coal Slime by Compound Coal-based Fischer-tropsch Synthetic Oil and Traditional Hydrocarbon Oil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 95-99. doi: 10.13779/j.cnki.issn1001-0076.2023.06.011

Comparative Study on Floatation of Low Rank Coal Slime by Compound Coal-based Fischer-tropsch Synthetic Oil and Traditional Hydrocarbon Oil

More Information
  • In order to further expand the utilization of coal−based fischer−tropsch synthetic oil, develop green utilization technology with low energy consumption, low pollution, low emission and low cost, and empower carbon peaking and carbon neutralization in coal chemical industry, a new collector was prepared based on coal−based fischer−tropsch synthetic oil, and its application effect with traditional hydrocarbon oil in low−order slime flotation was investigated. The results showed that the blended coal−based fischer−tropsch synthetic oil could be used as collector for coal slime flotation, and under the condition of the same dosage, it could obtain better flotation index than traditional hydrocarbon oil collector. When the collector dosage was 50 g/t and kerosene was used as collector, the clean coal ash fraction was 9.01%, and the clean coal yield was 86.48%. When the coal−based fischer−tropsch synthetic oil JZC−1, LHC−1 and JCZC were mixed in a mass ratio of 1∶1∶1, the better flotation clean coal index could be obtained, at this time, the clean coal ash fraction was 8.96%, and the clean coal yield was 86.80%. Compared with traditional hydrocarbon oil, compound coal−based fischer−tropsch synthetic oil had longer carbon chain and some isoparaffins. By optimizing the length of alkane carbon chain and the number of branched chains in collector, its selectivity and collectivity were improved, so clean coal products with lower ash content and higher yield could be obtained under the same dosage.

  • 加载中
  • [1] 王晓亮. 费托合成技术的发展前景[J]. 山西化工, 2018, 38(3): 49−51.

    Google Scholar

    WANG X L. Development prospect of Fischer-Tropsch synthesis technology[J]. Shanxi Chemical Industry, 2018, 38(3): 49−51.

    Google Scholar

    [2] 闫秀婷. 费托合成技术介绍[J]. 当代化工, 2013, 42(6): 821−822.

    Google Scholar

    YAN X T. Introduction of Fischer-Tropsch synthesis technology[J]. Contemporary Chemical Industry, 2013, 42(6): 821−822.

    Google Scholar

    [3] CHEN C B, HOU B, LIU Y, et al. Carbon species on the surface of carbon-coated catalysts and their effects on Fischer-Tropsch synthesis products[J]. Fuel, 2024, 341: 127381.

    Google Scholar

    [4] CHEN Z P, MENG Y L, LU J, et al. The Effect of hydrophobically modified iron catalysts with hexadecyltrimethoxysilane on fischer-tropsch synthesis[J]. Chemistry Select, 2023, 8: e202202903.

    Google Scholar

    [5] 任雷平, 胡小刚, 胡玉玺. 混合药剂系统在煤浮选中的研究进展[J]. 中国煤炭, 2023, 49(6): 98−104. doi: 10.3969/j.issn.1006-530X.2023.06.014

    CrossRef Google Scholar

    REN L P, HU X G, HU Y X. Research progress of mixed reagent system in coal flotation[J]. China Coal, 2023, 49(6): 98−104. doi: 10.3969/j.issn.1006-530X.2023.06.014

    CrossRef Google Scholar

    [6] 夏阳超, 蘧鹏程, 邢耀文, 等. 基于分子对接技术的难浮煤浮选捕收剂虚拟筛选研究[J]. 煤炭学报, 2022(1): 1−19.

    Google Scholar

    XIA Y C, QU P C, XING Y W, et al. Study on virtual screening of collector for flotation of difficult floating coal based on molecular docking technology[J]. Journal of China Coal Society, 2022(1): 1−19.

    Google Scholar

    [7] 曹亦俊, 闫小康, 王利军, 等. 微细粒浮选的微观湍流强化[J]. 矿产保护与利用, 2017(2): 113−118. doi: 10.13779/j.cnki.issn1001-0076.2017.02.021

    CrossRef Google Scholar

    CAO Y J, YAN X K, WANG L J, et al. Microturbulence enhancement of fine flotation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 113−118. doi: 10.13779/j.cnki.issn1001-0076.2017.02.021

    CrossRef Google Scholar

    [8] 王晖, 李志红, 樊民强, 等. 羧酸对低阶煤泥浮选的促进作用研究[J]. 矿产综合利用, 2023(2): 45−51.

    Google Scholar

    WANG H, LI Z H, FAN M Q, et al. Study on promoting effect of carboxylic acid on flotation of low-rank slime[J]. Comprehensive Utilization of Mineral Resources, 2023(2): 45−51.

    Google Scholar

    [9] CHENG G, ZHANG M N, LU Y, et al. New insights for improving low-rank coal flotation performance via emulsified waste fried oil collector[J]. Fuel, 2024, 357: 129925. doi: 10.1016/j.fuel.2023.129925

    CrossRef Google Scholar

    [10] ZHANG M N, CHENG G, LU YANG, et al. Preparation of long-flame coal flotation collector from waste cooking oil[J]. Minerals Engineering, 2023, 202: 108296. doi: 10.1016/j.mineng.2023.108296

    CrossRef Google Scholar

    [11] 赵俊吉, 王钰赛, 刘晓康, 等. 新型复配捕收剂强化低阶煤泥浮选机理研究[J]. 矿业研究与开发, 2022, 42(5): 33−39.

    Google Scholar

    ZHAO J J, WANG Y S, LIU X K, et al. Study on mechanism of strengthening low-rank slime flotation with new compound collector[J]. Mining Research and Development, 2022, 42(5): 33−39.

    Google Scholar

    [12] 陈嘉亮, 朱文耀, 常梦洁, 等. 煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的实验研究[J]. 矿产保护与利用, 2023, 43(2): 20−26.

    Google Scholar

    CHEN J L, ZHU W Y, CHANG M J, et al. Experimental study on the slime flotation of Nanliang coal mine with kerosene/methyl oleate compound collectors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 20−26.

    Google Scholar

    [13] 荀海鑫, 康文泽, 刘松阳. AO捕收剂对稀缺难浮煤泥的捕收效果研究[J]. 煤炭科学技术, 2012, 40(8): 118−124.

    Google Scholar

    XUN H X, KANG W Z, LIU S Y. Study on collecting effect of AO collector on scarce and difficult-to-float coal slime[J]. Coal science and technology, 2012, 40(8): 118−124.

    Google Scholar

    [14] 康文泽, 刘松阳, 张亚革. AO捕收剂浮选稀缺难浮煤实验[J]. 黑龙江科技学院学报, 2011, 21(2): 85−88.

    Google Scholar

    KANG W Z, LIU S Y, ZHANG Y G. Experiment on flotation of scarce and difficult-to-float coal with AO collector[J]. Journal of Heilongjiang Institute of Science and Technology, 2011, 21(2): 85−88.

    Google Scholar

    [15] 夏阳超. 褐煤表面吸水机理及润湿性调控的分子模拟研究[D]. 太原: 太原理工大学, 2018.

    Google Scholar

    XIA Y C. Molecular simulation of water absorption mechanism and wettability regulation on lignite surface[D]. Taiyuan: Taiyuan University of Technology, 2018.

    Google Scholar

    [16] 解维伟, 王亚宁, 张子洞, 等. 同碳数烷烃捕收剂的结构对浮选性能的影响[J]. 矿产综合利用, 2023. Http://kns.cnki.net/kcms/detail/51.1251.td.20231011.1101.002.html.

    Google Scholar

    XIE W W, WANG Y N, ZHANG Z D, et al. Influence of the structure of same carbon number alkane traps on flotation performance[J]. Comprehensive Utilization of Minerals Resources, 2023. Http://kns.cnki.net/kcms/detail/51.1251.td.20231011.1101.002.html.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(469) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint