Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

GUI Wanting, LEI Dashi, WANG Yubin, ZHANG Shuai, ZHAO Xin, TIAN Jiayi. Inhibition Mechanism of Lead Ions Synergized with Malic Acid on Talc[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 86-94. doi: 10.13779/j.cnki.issn1001-0076.2023.06.010
Citation: GUI Wanting, LEI Dashi, WANG Yubin, ZHANG Shuai, ZHAO Xin, TIAN Jiayi. Inhibition Mechanism of Lead Ions Synergized with Malic Acid on Talc[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 86-94. doi: 10.13779/j.cnki.issn1001-0076.2023.06.010

Inhibition Mechanism of Lead Ions Synergized with Malic Acid on Talc

More Information
  • Talc is a common co−occurring mineral of metal sulfide ores such as molybdenite, with excellent natural hydrophobicity. To elucidate the mechanism of flotation behavior of talc under the action of Pb ions and malic acid when kerosene is used as a collector, single mineral flotation tests of talc were carried out, and the adsorption mechanism of the reagents on the surface of talc was investigated by ζ−potential, XPS and FTIR. The results showed that the inhibition of talc by 1.0×10−3 mol/L malic acid was the most significant when the pH was 8 and the Pb2+ concentration was 1.0×10−4 mol/L. The recovery of talc was 54.60%, which was 32.50 percentage lower than that without inhibitors and 11.66 percentage lower than that of malic acid alone. The hydroxyl complex of lead ions in solution, Pb(OH)2, Pb(OH)3and C4H4O52− with strong hydrophilicity could be adsorbed on the surface of talc, and their combined effects shifted the surface potential of talc negatively, which was unfavorable to the adsorption of kerosene. Malate ions eroded the talc surface and reacted with the active Mg ion site on talc surface to generate hydrophilic magnesium malate, which could significantly improve the hydrophilicity of talc and change its contact angle from 64.27° to 39.87°. The research can provide significant reference for the efficient flotation separation of talc−containing minerals.

  • 加载中
  • [1] WEIMING W, TAO C, YANHAI S, et al. The flotation separation of molybdenite from talc using zinc sulfate in sodium silicate system and related mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641.

    Google Scholar

    [2] 严海军, 罗仙平, 朱贤文, 等. 硫化矿浮选中滑石抑制剂的研究进展[J]. 矿产保护与利用, 2020, 40(1): 138−144.

    Google Scholar

    YAN H J, LUO X P, ZHU X W, et al. Research Progress on talc inhibitors in sulfide ore flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 138−144.

    Google Scholar

    [3] ZHONG C H, WANG H H, ZHANG L Z, et al. Flotation separation of molybdenite and talc by xanthan gum[J]. Powder Technology, 2021, 388.

    Google Scholar

    [4] 钟春晖, 冯博, 严华山, 等. 三种有机抑制剂在辉钼矿与滑石浮选分离中的作用[J]. 中国有色金属学报, 2022, 32(12): 3843−3852.

    Google Scholar

    ZHONG C H, FENG B, YAN H S, et al. Effects of three organic depressants on flotation separation of molybdenite and talc[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3843−3852.

    Google Scholar

    [5] LONG T, ZHAO H H, YANG W, et al. Synergistic mechanism of acidified water glass and carboxymethyl cellulose in flotation of nickel sulfide ore[J]. Minerals Engineering, 2022, 181: 107547. doi: 10.1016/j.mineng.2022.107547

    CrossRef Google Scholar

    [6] 孙忠梅. 硫化铜浮选及滑石高效抑制剂的研究[J]. 黄金, 2016, 37(3): 54−58.

    Google Scholar

    SUN Z M. Research on copper sulfide flotation and the efficient inhibitor of talc[J]. Gold, 2016, 37(3): 54−58.

    Google Scholar

    [7] 叶岳华, 吴熙群, 李成必, 等. 滑石对铜硫矿选矿的影响与典型选矿工艺研究[J]. 有色金属工程, 2022, 12(1): 88−92. doi: 10.3969/j.issn.2095-1744.2022.01.013

    CrossRef Google Scholar

    YE Y H, WU X Q, LI C B, et al. Research on the influence of talc on beneficiation of copper−sulfur ore and typical beneficiation technology[J]. Nonferrous Metals Engineering, 2022, 12(1): 88−92. doi: 10.3969/j.issn.2095-1744.2022.01.013

    CrossRef Google Scholar

    [8] 欧阳燎原, 陈渊淦, 汪惠惠, 等. 不同矿浆温度下滑石表面甲基纤维素脱附行为研究[J]. 矿产综合利用, 2022(2): 66−68+78. doi: 10.3969/j.issn.1000-6532.2022.02.012

    CrossRef Google Scholar

    OUYANG L Y, CHEN Y G, WANG H H, et al. The desorption behavior of methylcellulose from talc at different temperature of pulp[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 66−68+78. doi: 10.3969/j.issn.1000-6532.2022.02.012

    CrossRef Google Scholar

    [9] 王纪镇, 荆茂晨, 赵博辉, 等. 菱镁矿及其脉石矿物浮选化学研究进展[J]. 中国有色金属学报, 2022, 32(12): 3823−3842.

    Google Scholar

    WANG J Z, JING M C, ZHAO B H, et al. Research progress of the flotation chemistry of magnesite and its gangue minerals[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3823−3842.

    Google Scholar

    [10] OU X W, LIN Z, LI J Y, et al. Surface microstructure engenders unusual hydrophobicity in phyllosilicates[J]. Chemical Communications, 2018, 54: 5418−5421. doi: 10.1039/C8CC02102C

    CrossRef Google Scholar

    [11] BEATTIE D A, LE H, KAGGWA G B N, et al. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals[J]. Minerals Engineering, 2006, 19(6-8): 598−608. doi: 10.1016/j.mineng.2005.09.011

    CrossRef Google Scholar

    [12] LI J L, MA Y Y, LI G L, et al. Depression mechanism of ZnSO4 and Na2CO3 on talc flotation[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(5): 1559−1571. doi: 10.1016/S1003-6326(23)66203-X

    CrossRef Google Scholar

    [13] 李长斌, 张国范, 刘洪江, 等. 铜离子对CMC浮选分离滑石和黄铁矿的影响[J]. 有色金属工程, 2020, 10(6): 65−69.

    Google Scholar

    LI C B, ZHANG G F, LIU H J, et al. Effect of Cu2+ ion on the flotation separation of talc and pyrite by CMC[J]. Nonferrous Metals Engineering, 2020, 10(6): 65−69.

    Google Scholar

    [14] 张作金, 代淑娟, 韩佳宏, 等. 菱镁矿浮选体系中金属离子对脉石矿物可浮性影响研究进展[J]. 矿产保护与利用, 2019, 39(2): 118−123.

    Google Scholar

    ZHANG Z J, DAI S J, HAN J H, et al. Research progress on the effect of metal lons on the floatability of gangue minerals in magnesite flotation system[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 118−123.

    Google Scholar

    [15] 张其东, 袁致涛, 刘炯天, 等. 金属离子对滑石浮选行为的影响及机理研究[J]. 金属矿山, 2016(4): 67−71.

    Google Scholar

    ZHANG Q D, YUAN Z T, LIU J T, et al. Influence and mechanism of metal ions on flotation behavior of talc[J]. Metal Mine, 2016(4): 67−71.

    Google Scholar

    [16] 黄鹏亮, 杨丙桥, 胡杨甲, 等. 铜钼分离技术研究进展[J]. 有色金属(选矿部分), 2019(5): 50−55+62.

    Google Scholar

    HUANG P L, YANG B Q, HU Y J, et al. Progress on copper−molybdenum separation technology[J]. Nonferrous Metals (Mineral Processing Section), 2019(5): 50−55+62.

    Google Scholar

    [17] 王宇斌, 文堪, 王望泊, 等. DL−苹果酸对白云母可浮性的抑制机理[J]. 矿产保护与利用, 2018(3): 117−123. doi: 10.13779/j.cnki.issn1001-0076.2018.03.021

    CrossRef Google Scholar

    WANG Y B, WEN K, WANG W B, et al. Inhibition mechanism of DL−malic acid on the floatability of muscovite[J]. Conservation and Utilization of Mineral Resources, 2018(3): 117−123. doi: 10.13779/j.cnki.issn1001-0076.2018.03.021

    CrossRef Google Scholar

    [18] 王宇斌, 张小波, 余乐, 等. 油酸钠体系下Pb2+对白云母的活化机理研究[J]. 非金属矿, 2016, 39(6): 15−19.

    Google Scholar

    WANG Y B, ZHANG X B, YU L, et al. The activation mechanism study of Pb2+ about muscovite in sodium oleate system[J]. Non−metallic Mines, 2016, 39(6): 15−19.

    Google Scholar

    [19] WANG C, ZHAI Q, LIU R, et al. Using pectin to separate talc and molybdenite through the surface modification with Cu2+: applications and mechanism[J]. International Journal of Mining Science and Technology, 2023, 33(3): 363−377. doi: 10.1016/j.ijmst.2022.09.010

    CrossRef Google Scholar

    [20] 赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2): 7−11.

    Google Scholar

    ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2): 7−11.

    Google Scholar

    [21] 印万忠, 龙恺云, 张西山, 等. 矿物捕收剂滑石对孔雀石的捕收作用及其机理[J]. 金属矿山, 2023(8): 50−57. doi: 10.19614/j.cnki.jsks.202308005

    CrossRef Google Scholar

    YIN W Z, LONG K Y, ZHANG X S, et al. Collecting effect and mechanism of mineral collector talc on malachite[J]. Metal Mine, 2023(8): 50−57. doi: 10.19614/j.cnki.jsks.202308005

    CrossRef Google Scholar

    [22] 王宇斌, 党炜犇, 李慧, 等. 磁化蒸馏水体系下水玻璃对辉钼矿浮选行为的影响[J]. 中国矿业大学学报, 2020, 49(3): 602−608. doi: 10.13247/j.cnki.jcumt.001156

    CrossRef Google Scholar

    WANG Y B, DANG W B, LI H, et al. Effect of sodium silicate on the flotation behavior of molybdenite in magnetized distilled water system[J]. Journal of China University of Mining & Technology, 2020, 49(3): 602−608. doi: 10.13247/j.cnki.jcumt.001156

    CrossRef Google Scholar

    [23] 代淑娟, 于连涛, 李晓安, 等. 捕收剂LKD−1对石英和滑石的作用机理[J]. 中国矿业, 2015, 24(10): 141−144.

    Google Scholar

    DAI S J, YU L T, LI X A, et al. Research into mechanism of quartz and talc in system of LKD−1 collector[J]. China Mining Magazine, 2015, 24(10): 141−144.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(5)

Article Metrics

Article views(486) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint