Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

LIU Yutong, LUO Huihua, ZHAO Jun, PENG Liqing, LIU Ju, CEN Mei, LI Fengyuan. Low Temperature Flotation of a Low-grade Phosphate Rock in Yichang by Modified Fatty Acids[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2023.06.012
Citation: LIU Yutong, LUO Huihua, ZHAO Jun, PENG Liqing, LIU Ju, CEN Mei, LI Fengyuan. Low Temperature Flotation of a Low-grade Phosphate Rock in Yichang by Modified Fatty Acids[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2023.06.012

Low Temperature Flotation of a Low-grade Phosphate Rock in Yichang by Modified Fatty Acids

More Information
  • In order to develop the low−grade colloidal phosphate ore resources with low magnesium and high sesquioxide in a mine in Yichang of Hubei Province, cotton oil fatty acid soap was used as raw material and compounded with polyoxyethylene ether nonionic surfactant to obtain a good selective anionic collector MON−135, which was used to conduct a pilot study of low temperature direct and reverse flotation. The experimental results showed that at a flotation pulp temperature of 14 ℃ and a grinding fineness of −0.074 mm 93.7%, a process was adopted involving direct flotation with one roughing and one cleaning and one scavenging followed by one roughing and one scavenging in reverse flotation, the dosages of sodium carbonate, water glass and MON−135 for direct flotation roughing were 7.0 kg/t, 3.0 kg/t and 1.4 kg/t, respectively; the dosage of MON−135 for positive flotation sweeping was 0.5 kg/t; the dosages of sulfuric acid and collector LAA−T for reverse flotation roughing were 9.0 kg/t and 0.9 kg/t, respectively; and the dosage of sulfuric acid for sweeping was 2.5 kg/t. the phosphate concentrate P2O5 grade of 32.61% and recovery of 92.67% were obtained in the closed circuit test. The results show that the use of low temperature collector can effectively flotation collophane ore at a lower flotation temperature, and can obtain a better beneficiation index.

  • 加载中
  • [1] 李成秀, 文书明. 我国磷矿选矿现状及其进展[J]. 矿产综合利用, 2010(2): 22−25. doi: 10.3969/j.issn.1000-6532.2010.02.007

    CrossRef Google Scholar

    LI C X, WEN S M. Status quo and progress in mineral processing technology of phosphorus ores in China[J]. Multipurpose Utilization of Mineral Resources, 2010(2): 22−25. doi: 10.3969/j.issn.1000-6532.2010.02.007

    CrossRef Google Scholar

    [2] 杜令攀, 陈赐云, 钟晋, 等. 浅析磷矿选矿技术进展与问题对策[J]. 化工矿物与加工, 2016(1): 57−61. doi: 10.16283/j.cnki.hgkwyjg.2016.01.016

    CrossRef Google Scholar

    DU L P, CHEN C Y, ZHONG J, et al. Analysis on the progress of phosphate ore dressing technology and countermeasures[J]. Industrial Minerals & Processing, 2016(1): 57−61. doi: 10.16283/j.cnki.hgkwyjg.2016.01.016

    CrossRef Google Scholar

    [3] 刘乃富. 湖北省中低品位磷矿合理利用的分析与建议[J]. 化工矿物与加工, 2005, 34(11): 1−4. doi: 10.3969/j.issn.1008-7524.2005.11.001

    CrossRef Google Scholar

    LIU N F. Analysis and proposal about rational utilization of middle−low grade phosphate rock in Hubei province[J]. Industrial Minerals & Processing, 2005, 34(11): 1−4. doi: 10.3969/j.issn.1008-7524.2005.11.001

    CrossRef Google Scholar

    [4] 刘树永, 韩百岁, 赵通林, 等. 中低品位磷矿浮选药剂研究现状与展望[J]. 矿产综合利用, 2021(6): 91−100.

    Google Scholar

    LIU S Y, HAN B S, ZHAO T L, et al. Current status and prospects of the research on flotation reagent for medium and low grade phosphorite ore[J]. Multipurpose Utilization of Mineral Resources, 2021(6): 91−100.

    Google Scholar

    [5] 杨丽珍, 魏祥松. 北方低品位磷矿综合回收利用选矿研究及应用[J]. 化工矿产地质, 2007(1): 27−30. doi: 10.3969/j.issn.1006-5296.2007.01.006

    CrossRef Google Scholar

    YANG L Z, WEI X S. Mineral dressing investigation and application of the compositive recycle for low grade phosphorite in north China[J]. Geology of Chemical Minerals, 2007(1): 27−30. doi: 10.3969/j.issn.1006-5296.2007.01.006

    CrossRef Google Scholar

    [6] 杨聪, 陈兴华, 解文康, 等. 北方某中低品位磷矿低温浮选实验研究[J]. 化工矿物与加工, 2017(2): 001.

    Google Scholar

    YANG C, CHEN X H, XIE W K, et al. Experimental study on flotation of a mid−low grade phosphate ore from north China at low temperature[J]. Industrial Minerals & Processing, 2017(2): 001.

    Google Scholar

    [7] 黄齐茂, 邓成斌, 潘志权, 等. 新型α−取代脂肪酸衍生物类磷矿浮选捕收剂(Ⅰ)[J]. 武汉工程大学学报, 2008(2): 15−17.

    Google Scholar

    HUANG Q M, DENG C B, PAN Z Q, et al. Novel collector of α−substituted fatty acid ester collector for phosphate ore[J]. J. Wuhan Inst. Tech, 2008(2): 15−17.

    Google Scholar

    [8] 黄齐茂, 向平, 罗惠华, 等. 新型复合捕收剂常温浮选某胶磷矿实验研究[J]. 化工矿物与加工, 2010(4): 005.

    Google Scholar

    HUANG Q M, XIANG P, LUO H H, et al. Flotation of phosphate rock at normal temperature using composite collectors[J]. Industrial Minerals & Processing, 2010(4): 005.

    Google Scholar

    [9] 罗惠华, 汤家焰, 李成秀, 等. 胶磷矿选矿中不同植物脂肪酸的常温浮选性能[J]. 武汉工程大学学报, 2013, 35(1): 17−20.

    Google Scholar

    LUO H H, TANG J Y, LI C X, et al. Normal temperature flotation performance of different plant fatty acids in the beneficiation of colophosphate ores[J]. J. Wuhan Inst. Tech., 2013, 35(1): 17−20.

    Google Scholar

    [10] 罗惠华, 汤家焰, 李成秀, 等. 不同表面活性剂对改性脂肪酸捕收剂的增效作用[J]. 武汉工程大学学报, 2013, 35(3): 30−33.

    Google Scholar

    LUO H H, TANG J Y, LI C X, et al. Synergistic effect of surfactants on modified fatty acid collector[J]. J. Wuhan Inst. Tech., 2013, 35(3): 30−33.

    Google Scholar

    [11] 许时. 矿石可选性研究[M]. 北京: 冶金工业出版社, 1981.

    Google Scholar

    XU S. Ore selectivity study [M]. Beijing: Metallurgical Industry Press, 1981

    Google Scholar

    [12] 曾理, 姜小明, 杨远敏. 贵州某硅钙质磷矿岩的浮选实验研究[J]. 矿产保护与利用, 2011(Z1): 79−82. doi: 10.3969/j.issn.1001-0076.2011.05.020

    CrossRef Google Scholar

    ZENG L, JIANG X M, YANG Y M. Experimental study on the flotation of silicon−calcium collophanite[J]. Conservation and Utilization of Mineral Resources, 2011(Z1): 79−82. doi: 10.3969/j.issn.1001-0076.2011.05.020

    CrossRef Google Scholar

    [13] 刘向, 李祚毕, 李展, 等. 黄铁矿低温浮选实验及机理分析[J]. 矿产保护与利用, 2019, 39(4): 115−120.

    Google Scholar

    LIU X, LI Z B, LI Z, et al. Study and mechanism analysis on the flotation of pyrite in low temperature[J] Conservation and Utilization of Mineral Resources, 2019, 39(4): 115−120.

    Google Scholar

    [14] 陈浩, 任子杰, 高惠民, 等. 石油磺酸钠低温浮选石英型萤石的实验研究[J]. 矿产保护与利用, 2020, 40(3): 135−139.

    Google Scholar

    CHEN H, REN Z J, GAO H M, et al. Experimental study on low−temperature flotation of quartz−type fluorite with petroleum sodium sulfonate[J]. Conservation and Utilization of Mineral Resources. 2020, 40(3): 135−139.

    Google Scholar

    [15] 罗惠华, 刘宇桐, 陈官华, 等. 常温正反浮选工艺富集放马山低品位胶磷矿研究[J]. 磷肥与复肥, 2022, 37(8): 9−13.

    Google Scholar

    LUO H H, LIU Y T, CHEN G H, et al. Research on enrichment of Fangmashan low grade collophanite by positive and reverse flotation at normal temperature[J]. Phosphate & Compound Fertilizer, 2022, 37(8): 9−13.

    Google Scholar

    [16] 黄晨蕾, 罗惠华, 刘丽芬, 等. 基于晋宁堆存低品位胶磷矿工艺矿物学分析的正反浮选研究[J]. 化工矿物与加工, 2020, 49(7): 38−41+45.

    Google Scholar

    HUANG C L, LUO H H, LIU L F, et al. Research on the direct−reverse flotation based on process mineralogy of low−grade phosphate rock stockpiled in Jinning Phosphate Mine[J]. Industrial Minerals & Processing, 2020, 49(7): 38−41+45.

    Google Scholar

    [17] 郑其. 胶磷矿的反浮选[J]. 中国矿业, 1998(2): 59−62.

    Google Scholar

    ZHENG Q. Reverse flotation of collophanite[J]. China Mining Magazine, 1998(2): 59−62.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(373) PDF downloads(52) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint