Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

WANG Sen, LIANG Dong, BU Xianzhong, WAN He, XUE Jiwei, ZHANG Chonghui, SONG Xuewen. First−principles Study on Sodium Alginate Enhanced Sodium Oleate for Flotation Separation of Scheelite and Calcitee[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 79-85. doi: 10.13779/j.cnki.issn1001-0076.2023.06.009
Citation: WANG Sen, LIANG Dong, BU Xianzhong, WAN He, XUE Jiwei, ZHANG Chonghui, SONG Xuewen. First−principles Study on Sodium Alginate Enhanced Sodium Oleate for Flotation Separation of Scheelite and Calcitee[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 79-85. doi: 10.13779/j.cnki.issn1001-0076.2023.06.009

First−principles Study on Sodium Alginate Enhanced Sodium Oleate for Flotation Separation of Scheelite and Calcitee

More Information
  • Flotation separation of scheelite and calcite has been a hot research topic. The effect of sodium alginate on the flotation separation of scheelite and calcite in a sodium oleate system was investigated, Density functional theory was used to establish three adsorption models of water−mineral, sodium alginate−mineral, and sodium oleate−mineral, respectively compared the differences in adsorption energy. The results of the study showed thatwhen the dosage of sodium oleate was 50 mg/L, sodium algina was 10 mg/L, and the pH = 9, the recovery of calcite could be controled to 5.20%, while the recovery of scheelite could reach to 83.20%, which showed a significant effect. The molecular simulation results indicated that sodium alginate adsorped on both surface, but the adsorption energy of calcite was stronger than scheelite. After adsorption of sodium alginate, the adsorption energy of sodium oleate on calcite was 43.20 kJ/mol, the adsorption energy of sodium oleate on scheelite was −136.32 kJ/mol. The results demonstrate alginate can selectively inhibit calcite in sodium oleate without affecting scheelite,The AFM image observed also confirmed that a large amount of sodium alginate was adsorbed on the surface of calcite, also provided constructive advice for the separation of scheelite and calcite.

  • 加载中
  • [1] 赵晨, 孙传尧, 印万忠, 等. 油酸钠浮选几种含钙矿物的晶体化学研究[J]. 中国钨业, 2020, 35(2): 23−28.

    Google Scholar

    ZHAO C, SUN C X, YIN W Z, et al. On the crystal chemistry of several calcium minerals flotation with sodium oleate as the collector[J]. China Tungsten Industry, 2020, 35(2): 23−28.

    Google Scholar

    [2] 陈伟, 张志豪, 卜显忠, 等. 抑制剂葫芦巴胶浮选分离白钨矿和方解石的作用及机理[J]. 金属矿山, 2021(12): 48−55.

    Google Scholar

    CHEN W, ZHANG Z H, BU X Z, et al. Function and mechanism of depressant fenugreek gum flotation separation of scheelite and calcite[J]. Metal Mine, 2021(12): 48−55.

    Google Scholar

    [3] MOHAMED A. M. ABDALLA, HUIQING PENG, HUSSEIN A. YOUNUS, et al. Effect of synthesized mustard soap on the scheelite surface during flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 548: 108−116.

    Google Scholar

    [4] 李有余, 张英, 宋国军, 等. 三种含钙矿物抑制剂研究进展及机理[J]. 中国钨业, 2016, 31(1): 52−57. doi: 10.3969/j.issn.1009-0622.2016.01.010

    CrossRef Google Scholar

    LI Y Y, ZHANG Y, SONG G J, et al. Mechanism and research progress of depressants for scheelite, fluorite and calcite flotation separation[J]. China Tungsten Industry, 2016, 31(1): 52−57. doi: 10.3969/j.issn.1009-0622.2016.01.010

    CrossRef Google Scholar

    [5] 马强, 李育彪, 李万青, 等. CMC浮选分离萤石与方解石作用机理研究[J]. 金属矿山, 2022(7): 187−192.

    Google Scholar

    MA Q, LI Y B, LI W Q, Study on the reaction mechanism of fluorite and calcite flotation separation by carboxymethyl cellulose[J]. Metaj Mine, 2022(7): 187−192.

    Google Scholar

    [6] 李皊值. 用改性水玻璃浮选钼矿石[J]. 有色金属(选矿部分), 2003(3): 33−34.

    Google Scholar

    LI L Z. Molybdenum ores flotation with modified water glass[J]. Nonferrous Metals(Mineral Processing Section), 2003(3): 33−34.

    Google Scholar

    [7] 宁江峰. Zn2+、Fe3+与水玻璃组合抑制剂对萤石、方解石浮选分离的影响研究[D]. 武汉: 武汉科技大学, 2021.

    Google Scholar

    NING J F. Study on the effect of combined inhibitors of Zn2+ 、Fe3+ and sodium silicate on the flotation separation of fluorite and calcite[D]. Wuhan: Wuhan University of Science and Technology, 2021.

    Google Scholar

    [8] 周贺鹏, 吴寒丹, 龚磊, 等. 新型有机抑制剂对萤石和方解石浮选分离的影响及作用机理[J]. 金属矿山, 2023(5): 122−128.

    Google Scholar

    ZHOU H P, WU H D, GONG L, et al. Effect and mechanism of novel organic inhibitors on flotation separation of fluorite and calcite[J]. Metal Mine, 2023(5): 122−128.

    Google Scholar

    [9] 路倩倩, 韩海生, 陈占发, 等. 典型有机抑制剂在萤石和方解石浮选分离中的作用机制及其应用[J]. 金属矿山, 2023(1): 216−222.

    Google Scholar

    LU Q Q, HAN H S, CHEN Z F, et al. Application and mechanism of typical organic inhibitors on flotation separation of fluorite and calcite[J]. Metal Mine, 2023(1): 216−222.

    Google Scholar

    [10] CHEN W, FENG Q M, ZHANG G F, et al. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite[J]. Minerals Engineering, 2017, 113: 1−7. doi: 10.1016/j.mineng.2017.07.016

    CrossRef Google Scholar

    [11] 冯博, 张文谱, 郭蔚, 等. 组合捕收剂及海藻酸钠在白钨矿和方解石浮选分离中的作用及机理[J]. 中国有色金属学报, 2019, 29(1): 203−210.

    Google Scholar

    FENG B, ZHANG W P, GUO W, et al. Role and mechanism of combined collector and sodium alginate in flotation separation of scheelite and calcite[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1): 203−210.

    Google Scholar

    [12] 李宇浩, 谭泽凌, 吴志强, 等. 白铅矿表面硫化及黄药吸附的密度泛函理论研究[J]. 矿业研究与开发, 2023, 43(7): 192−198.

    Google Scholar

    LI Y H, TAN Z L, WU Z Q, et al. Study on density functional theory in sulfidation and xanthate adsorption on cerussite surface[J]. Mining Research and Development, 2023, 43(7): 192−198.

    Google Scholar

    [13] 高志勇, 孙伟, 刘晓文, 等. 白钨矿和方解石晶面的断裂键差异及其对矿物解理性质和表面性质的影响[J]. 矿物学报, 2010, 30(4): 470−475.

    Google Scholar

    GAO Z Y, SUN W, LIU X W, et al. Influences on cleavage and surface properties by broken bonds in the surface of scheelite and calcite[J]. Acta Mineralogica Sinica, 2010, 30(4): 470−475.

    Google Scholar

    [14] 史新章, 王介良, 曹钊. 独居石电子结构和辛基羟肟酸在其(100)面的吸附机理[J]. 中国有色金属学报, 2021, 31(8): 2238−2246.

    Google Scholar

    SHI X Z, WANG J L, CAO Z. Electronic structure of monazite and adsorption mechanism of octyl hydroxamic acid on its (100) plane[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2238−2246.

    Google Scholar

    [15] 魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31−36.

    Google Scholar

    WEI Z L, LI Y B. Anisotropy of molybdenite surface and its effects on flotation mechanism[J]. Conservation and Utilization of Mineral Resources, 2018(3): 31−36.

    Google Scholar

    [16] 王泽红, 毛勇, 田鹏程, 等. 氯化钙与油酸钠对石英粉磨效率的影响及机理[J]. 有色金属(选矿部分), 2022(5): 24−31.

    Google Scholar

    WANG Z H, MAO Y, TIAN P C, et al. Effect and mechanism of calcium chloride and sodium oleate on grinding efficiency of quartz powder[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 24−31.

    Google Scholar

    [17] 毛勇, 王泽红, 田鹏程, 等. 组合助磨剂对石英粉磨的影响及其作用机理研究[J]. 中国矿业, 2021, 30(8): 117−124. doi: 10.12075/j.issn.1004-4051.2021.08.021

    CrossRef Google Scholar

    MAO Y, WANG Z H, TIAN P C, et al. Effect of combined grinding aids on quartz grinding and its mechanism[J]. China Mining Magazine, 2021, 30(8): 117−124. doi: 10.12075/j.issn.1004-4051.2021.08.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(7)

Article Metrics

Article views(95) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint