Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

ZHOU Qiang, WANG Yifan, XIAO Qingfei, LIU Xiangyang, SHAO Yunfeng, HUANG Shouxiang, WANG Qingkai, ZOU Hai. Experimental Study of the Strength Distribution of Irregular Copper−molybdenum Ore Particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 33-42. doi: 10.13779/j.cnki.issn1001-0076.2023.04.004
Citation: ZHOU Qiang, WANG Yifan, XIAO Qingfei, LIU Xiangyang, SHAO Yunfeng, HUANG Shouxiang, WANG Qingkai, ZOU Hai. Experimental Study of the Strength Distribution of Irregular Copper−molybdenum Ore Particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 33-42. doi: 10.13779/j.cnki.issn1001-0076.2023.04.004

Experimental Study of the Strength Distribution of Irregular Copper−molybdenum Ore Particles

More Information
  • The fracture of irregular ore particles is a common phenomenon in mineral processing. The strength distribution of particles determines the crushing characteristics of ore. In order to quantitatively analyze the strength distribution of irregular particles, the maximum crushing force and fracture energy in the crushing process were determined by quasi−static uniaxial compression tests on five different sizes of copper−molybdenum ore particles. Three common statistical models were selected to fit the particle strength under different definitions(crushing force, crushing stress, breakage energy and breakage specific energy), and their quantitative relationships with particle size and material properties were studied. The test results show that the Weibull model was more suitable for describing the strength distribution of copper−molybdenum ore particles than the other two models. The dispersion degree D of the strength distribution in the model was related to the material properties and had a weak function relationship with the particle size. F63.20 and E63.20 were proportional to the particle size, while σ63.20 and Em63.20 decreased with the increase of particle size in a power function law. The relationship between particle strength (maximum breaking force−breaking energy and stress−breaking specific energy) under different definitions is only related to material properties, not particle size. The slopes were 1.49 and 0.67 in the double logarithmic coordinate system, respectively.

  • 加载中
  • [1] FUERSTENAU D W, ABOUZEID A Z M. The energy efficiency of ball milling in comminution[J]. International Journal of Mineral Processing, 2002, 67(1): 161−185.

    Google Scholar

    [2] TAVARES L M. Handbook of Powder Technology[M]. Oxford: Elsevier, 2007: 3−68.

    Google Scholar

    [3] POWELL M S, MORRISON R D. The future of comminution modelling[J]. International Journal of Mineral Processing, 2007, 84(1/2/3/4): 228−239. doi: 10.1016/j.minpro.2006.08.003

    CrossRef Google Scholar

    [4] VOGEL L, PEUKERT W. Breakage behaviour of different materials−construction of a mastercurve for the breakage probability[J]. Powder Technology, 2003, 129(1/2/3): 101−110. doi: 10.1016/S0032-5910(02)00217-6

    CrossRef Google Scholar

    [5] SALMAN, ALEXANDER RUSSELL, SERGEJ AMAN, et al. Breakage probability of granules during repeated loading[J]. Powder Technology, 2015, 269: 541−547. doi: 10.1016/j.powtec.2014.09.044

    CrossRef Google Scholar

    [6] AMAN S, JüRGEN T, KALMAN H. Breakage probability of irregularly shaped particles[J]. Chemical Engineering Science, 2010, 65(5): 1503−1512. doi: 10.1016/j.ces.2009.10.016

    CrossRef Google Scholar

    [7] 刘建远. 威布尔分布在颗粒碎裂描述和粉碎数学建模中的应用[J]. 矿冶, 2009(3): 1−8. doi: 10.3969/j.issn.1005-7854.2009.03.001

    CrossRef Google Scholar

    LIU J Y. Application of Weibull distribution in particle fragmentation description and comminution mathematical modeling[J]. Mining and Metallurgy, 2009(3): 1−8. doi: 10.3969/j.issn.1005-7854.2009.03.001

    CrossRef Google Scholar

    [8] ROZENBLAT Y, PORTNIKOV D, LEVY A, et al. Strength distribution of particles under compression[J]. Powder Technology, 2011, 208(1): 215−224. doi: 10.1016/j.powtec.2010.12.023

    CrossRef Google Scholar

    [9] HUANG J, XU S, YI H, HU S. Size effect on the compression breakage strengths of glass particles[J]. Powder Technology, 2014, 268(1): 86−94.

    Google Scholar

    [10] GHADIRI M, BRUNARD N, KOLENDA F. Weibull analysis of quasistatic crushing strength of catalyst particles[J]. Chemical Engineering Research & Design, 2003, 81(8): 953−962.

    Google Scholar

    [11] PETUKHOV Y, KALMAN H. Empirical breakage ratio of particles due to impact[J]. Powder Technology, 2004, 143(26): 160−169.

    Google Scholar

    [12] JüRGEN T, SCHREIER M, TORSTEN G. Impact crushing of concrete for liberation and recycling[J]. Powder Technology, 1999, 105(1): 39−51.

    Google Scholar

    [13] LIN Y L, WANG D M, LU W M. Compression and deformation of soft spherical particles[J]. Chemical Engineering Science, 2008, 63(1): 195−203. doi: 10.1016/j.ces.2007.09.028

    CrossRef Google Scholar

    [14] ANTONYUK S, TOMAS J, HEINRICH S. Breakage behaviour of spherical granulates by compression[J]. Chemical Engineering Science, 2005, 60(14): 4031−4044. doi: 10.1016/j.ces.2005.02.038

    CrossRef Google Scholar

    [15] WEICHERT R. Theoretical prediction of energy consumption and particle size distribution in grinding and drilling of brittle materials[J]. Particle & Particle Systems Characterization, 1991, 8(1): 55−62.

    Google Scholar

    [16] MA L, LI Z, WANG M. Effects of size and loading rate on the mechanical properties of single coral particles[J]. Powder Technology, 2019, 342: 961−971. doi: 10.1016/j.powtec.2018.10.037

    CrossRef Google Scholar

    [17] 黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究[D]. 合肥: 中国科学技术大学, 2016.

    Google Scholar

    HUANG J Y. Research on multi−scale deformation and breakage characteristics of brittle particle materials under impact load[D]. Hefei: University of Science and Technology of China, 2016.

    Google Scholar

    [18] 周强, 潘永泰, 朱长勇, 等. 准静态下脆性材料强度分布试验研究[J]. 煤炭学报, 2019, 44(S2): 708−716.

    Google Scholar

    ZHOU Q, PAN Y T, ZHU C Y, et al. Experimental study on strength distribution of brittle materials at quasistatic state[J]. Journal of China Coal Society, 2019, 44(S2): 708−716.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(3)

Article Metrics

Article views(388) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint