Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

LI Yunxiao, XIAO Qingfei, GUO Hongchen, LIU Xiangyang, ZHOU Qiang, WANG Xiaojiang. Optimization of Barrel Liner Modification of Ball Mill Based on Discrete Element Method[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 43-49. doi: 10.13779/j.cnki.issn1001-0076.2023.07.009
Citation: LI Yunxiao, XIAO Qingfei, GUO Hongchen, LIU Xiangyang, ZHOU Qiang, WANG Xiaojiang. Optimization of Barrel Liner Modification of Ball Mill Based on Discrete Element Method[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 43-49. doi: 10.13779/j.cnki.issn1001-0076.2023.07.009

Optimization of Barrel Liner Modification of Ball Mill Based on Discrete Element Method

More Information
  • Aiming at the problems of low energy utilization rate and high grinding steel consumption in the ball mill, the motion state and collision energy distribution of steel balls under different liner structures and liner heights were analyzed based on discrete element method (DEM). The results showed that the structure and height of the liner significantly affected the motion state and energy distribution of particles in the mill. The effect of rough liners (rib liners and double rib liners) on load lifting was stronger than that of smooth liners (single wave liners and double wave liners), but leaving profound impact of steel balls on the liners in the ball mill of rough liners and increasing the wear. Among the smooth liners, the double wave liner had the most reasonable energy distribution, with the lowest 52.10% steel ball−steel ball collision energy, and the highest 21.10% energy utilization rate (the sum of the collision energy of steel ball−ore and ore−ore in the total collision energy of the mill). With the gradual increase of the liner height, the number of steel balls moving at high speed may increase, and the impact of a large number of steel balls on the exposed liner would accelerate the wear. The total collision energy in the mill increased with the expansion of liner height, with the incremental collision energy of steel ball−liner and ore−liner, bringing the highest 21.10% energy utilization rate at 60 mm liner height, indicating that the best liner height at 60 mm. Therefore, the selection of the appropriate liner structure and liner height could optimize the energy utilization of the mill, improve the grinding environment, reduce steel consumption and save grinding costs.

  • 加载中
  • [1] WANG M H, YANG R Y, YU A B. DEM investigation of energy distribution and particle breakage in tumbling ball mills[J]. Powder Technology, 2012, 223: 83−91. doi: 10.1016/j.powtec.2011.07.024

    CrossRef Google Scholar

    [2] 尹自信. 球磨机铁矿石颗粒破碎及粒度分布行为研究[D]. 北京: 中国矿业大学, 2020: 1−5.

    Google Scholar

    YIN Z X. Study of iron ore particle crushing and particle size distribution behavior in ball mill[D]. Beijing: China University of Mining and Technology, 2020: 1−5.

    Google Scholar

    [3] B DOMINIK, P PHILIPPE. A generic wear prediction procedure based on the discrete element method for ball mill liners in the cement industry[J]. Minerals Engineering, 2017, 109: 55−79. doi: 10.1016/j.mineng.2017.02.014

    CrossRef Google Scholar

    [4] T PAUL, F JOCHEN, P MALCOLM, et al. Designing liners for performance not life[J]. Minerals Engineering, 2013, 43-44: 22−28. doi: 10.1016/j.mineng.2012.07.004

    CrossRef Google Scholar

    [5] 赵亮, 王裕龙. 球磨机衬板形状对工作效率的影响分析[J]. 科技创新与应用, 2017, 193(9): 126.

    Google Scholar

    ZHAO L, WANG Y L. Analysis of the influence of ball mill liner shape on work efficiency[J]. Science and Technology Innovation and Application, 2017, 193(9): 126.

    Google Scholar

    [6] 张谦. 基于离散元法的喀拉通克Φ5.5 m×1.8 m半自磨机筒体衬板形状优化及应用[D]. 昆明: 昆明理工大学, 2021: 20−22.

    Google Scholar

    ZHANG Q. Optimization of cylinder liner shape of Karatunk Φ5.5 m×1.8 m semi−autogenous mill based on discrete element method and its application [D]. Kunming: Kunming University of Technology, 2021: 20−22.

    Google Scholar

    [7] P W CLEARY, R D MORRISON, D MATT. Prediction of slurry grinding due to media and coarse rock interactions in a 3D pilot SAG mill using a coupled DEM + SPH model[J]. Minerals Engineering, 2020, 159: 1023−1036.

    Google Scholar

    [8] J I PEREIRA, P C MACHADO, J J PENAGOS, et al. Wear characterization from field and laboratory tests of pearlitic steels used for SAG mill liners[J]. Wear, 2017, 376/377: 37−45. doi: 10.1016/j.wear.2017.01.094

    CrossRef Google Scholar

    [9] P W CLEARY, O PHIL. Development of models relating charge shape and power draw to SAG mill operating parameters and their use in devising mill operating strategies to account for liner wear[J]. Minerals Engineering, 2018, 117: 42−62. doi: 10.1016/j.mineng.2017.12.007

    CrossRef Google Scholar

    [10] S H HONG, B K KIM. Effects of lifter bars on the ball motion and aluminum foil milling in tumbler ball mill[J]. Materials Letters, 2002, 57(2): 275−279. doi: 10.1016/S0167-577X(02)00778-4

    CrossRef Google Scholar

    [11] O HLUNGWANI, J RIKHOTSO, H DONG, et al. Further validation of DEM modeling of milling: effects of liner profile and mill speed[J]. Minerals Engineering, 2003, 16: 993−998. doi: 10.1016/j.mineng.2003.07.003

    CrossRef Google Scholar

    [12] 刘建平, 姬建钢, 陈松战, 等. 一种半自磨机筒体衬板的优化设计[J]. 矿山机械, 2014, 42(10): 81−83.

    Google Scholar

    LIU J P, JI J G, CHEN S Z, et al. Optimal design of cylinder liner of semi−automatic mill[J]. Mining Machinery, 2014, 42(10): 81−83.

    Google Scholar

    [13] 李占长, 黄雨, 付向上, 等. 大型半自磨机衬板的选材与制备[J]. 铸造技术, 2019, 40(2): 143−146.

    Google Scholar

    LI Z C, HUANG Y, FU X S, et al. Selection and preparation of liners for large semi−automatic mill[J]. Casting Technology, 2019, 40(2): 143−146.

    Google Scholar

    [14] 唐新民. 冬瓜山铜矿半自磨机筒体衬板和钢球的研究[J]. 化工矿物与加工, 2013, 42(10): 20−25.

    Google Scholar

    TANG X M. Study on cylinder liner and steel ball of semi−automatic mill in Dongguashan[J]. Chemical Minerals and Processing, 2013, 42(10): 20−25.

    Google Scholar

    [15] 卢建坤. 基于离散单元法的大型球磨机介质运动分析及参数优化[D]. 洛阳: 河南科技大学机电工程学院, 2013: 49−55.

    Google Scholar

    LU J K. Media motion analysis and parameter optimization of large ball mill based on discrete unit method [D]. Luoyang: College of Mechanical and Electrical Engineering, Henan University of Science and Technology, 2013: 49−55.

    Google Scholar

    [16] N V BRILLIANTOV, F SPAHN, J M. HERTZSH. Model for collisions in granular gases[J]. Phys Rev E, 1996: 53, 5382.

    Google Scholar

    [17] 钟文镇, 何克晶, 周照耀, 等. 粉末材料堆积的物理模型与仿真系统[J]. 物理学报, 2009, 58(S1): 21−28.

    Google Scholar

    ZHONG W Z, HE K J, ZHOU Z Y, et al. Physical model and simulation system for powder material stacking[J]. Journal of Physics, 2009, 58(S1): 21−28.

    Google Scholar

    [18] ZHU H P, YU A B. The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow[J]. Physica A: Statistical Mechanics and its Applications, 2003: 347−360.

    Google Scholar

    [19] P W CLEARY, R D MORRISON. Understanding fine ore breakage in a laboratory scale ball mill using DEM[J]. Minerals Engineering, 2011, 24: 352−366. doi: 10.1016/j.mineng.2010.12.013

    CrossRef Google Scholar

    [20] 田秋娟. 基于离散元方法的大型球磨机工作性能研究[D]. 长春: 吉林大学, 2011: 1−5.

    Google Scholar

    TIAN Q J. Research on the working performance of large ball mill based on discrete element method [D]. Changchun: Jilin University, 2011: 1−5.

    Google Scholar

    [21] P W CLEARY, D MORRISON. Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills[J]. Minerals Engineering, 2016, 86: 75−95. doi: 10.1016/j.mineng.2015.12.006

    CrossRef Google Scholar

    [22] P W CLEARY, B MOTION. Axial segregation and power consumption in a full scale two chamber cement mill[J]. Minerals Engineering, 2009, 22: 809−820. doi: 10.1016/j.mineng.2009.02.005

    CrossRef Google Scholar

    [23] A SATO, J KANO, F SAITO. Analysis of abrasion mechanism of grinding media in a planetary mill with DEM simulation[J]. Advanced Powder Technology, 2017, 21: 212−216.

    Google Scholar

    [24] PENG Y X, LI T Q, ZHU Z C, et al. Discrete element method simulations of load behavior with mono−sized iron ore particles in a ball mill[J]. Advances in Mechanical Engineering, 2017, 9(5): 1−10.

    Google Scholar

    [25] 李腾飞, 林蜀勇, 张博, 等. 不同转速率下球磨机内钢球的碰撞研究[J]. 中南大学学报(自然科学版), 2019, 50(2): 251−256.

    Google Scholar

    LI T F, LIN S Y, ZHANG B, et al. Study on the collision of steel balls in ball mills at different rotation rates[J]. Journal of Central South University (Natural Science Edition), 2019, 50(2): 251−256.

    Google Scholar

    [26] 张谦, 肖庆飞, 杨森, 等. 喀拉通克铜镍矿球磨机磨矿作业质量优化试验研究[J]. 矿产综合利用, 2020(4): 100−105.

    Google Scholar

    ZHANG Q, XIAO Q F, YANG S, et al. Experimental study on the quality optimization of ball mill grinding operation in Karatunk copper−nickel ore[J]. Mineral Comprehensive Utilization, 2020(4): 100−105.

    Google Scholar

    [27] 武煜凯, 肖庆飞, 高志勇. 多级配球降低半自磨中顽石积累及改善磨矿效果试验[J]. 稀有金属, 2022, 46(5): 673−680.

    Google Scholar

    WU Y K, XIAO Q F, GAO Z Y. Experiment on multi−stage ball distribution to reduce recalcitrant stone accumulation and improve grinding effect in semi−autogenous grinding[J]. Rare Metals, 2022, 46(5): 673−680.

    Google Scholar

    [28] MORRISON R D, SHI F, WHYTE R. Modelling of incremental rock breakage by impact–For use in DEM models[J]. Minerals Engineering, 2007, 20(3): 303−309. doi: 10.1016/j.mineng.2006.10.015

    CrossRef Google Scholar

    [29] CLEARY P W, ROB D, MORRISON R D, et al. Delaney. Incremental damage and particle size reduction in a pilot SAG mill: DEM breakage method extension and validation[J]. Minerals Engineering, 2018, 128: 56−68. doi: 10.1016/j.mineng.2018.08.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(537) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint