Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

HONG Xin, LUO Ximei, JIANG Wangqiang, JIA Lufan, SONG Zhenguo, WANG Yunfan. Research Progress of Flotation Frother[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 22-33. doi: 10.13779/j.cnki.issn1001-0076.2023.08.001
Citation: HONG Xin, LUO Ximei, JIANG Wangqiang, JIA Lufan, SONG Zhenguo, WANG Yunfan. Research Progress of Flotation Frother[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 22-33. doi: 10.13779/j.cnki.issn1001-0076.2023.08.001

Research Progress of Flotation Frother

    Fund Project: Financial support from the National Natural Science Foundation of China (Grant No. 51964025;52264030)), the Open Fund Project of the State Key Laboratory of Mineral Processing Science and Technology (BGRIMM–KJSKL–2023–10), Ten Thousand Talent Plans for Young Topnotch Talents of Yunnan Province (YNWR–QNBJ–2018–167) and the Fund Project of the Analytic and Testing Research Center of Kunming University of Science and Technology (2020T20140027).
More Information
  • Based on the important role of flotation frother, the types and applications of frother were introduced in this paper from three aspects of conventional frothers, novel(code) frothers and combined frothers. The influence factors of foam performance and their mechanism were summarized. Finally, the synergistic effect between frothers and collectors was briefly described, and the development trend of frother in the future was predicted.

  • 加载中
  • [1] 黄建平, 卢毅屏, 赵刚, 等. 浮选起泡剂及其研究新进展[J]. 金属矿山, 2012(12): 66−74. doi: 10.3969/j.issn.1001-1250.2012.12.018

    CrossRef Google Scholar

    HUANG G S, LU Y P, ZHAO G, et al. Review on flotation frothers and its research progress[J]. Metal Mine, 2012(12): 66−74. doi: 10.3969/j.issn.1001-1250.2012.12.018

    CrossRef Google Scholar

    [2] 杨磊, 孙玉龙. 浮选起泡剂的研究现状和发展趋势[J]. 科技视界, 2016(2): 137. doi: 10.3969/j.issn.2095-2457.2016.02.107

    CrossRef Google Scholar

    YANH L, SUN Y L. Research status and development trend of flotation frother[J]. Science& Technology Vision, 2016(2): 137. doi: 10.3969/j.issn.2095-2457.2016.02.107

    CrossRef Google Scholar

    [3] 程雅丽, 付晓恒, 杨晓冉, 等. 浮选起泡剂的研究进展[J]. 煤炭工程, 2017, 49(9): 142−145. doi: 10.11799/ce201709037

    CrossRef Google Scholar

    CHENG Y L, FU X H, YANG X R, et al. A review: research of flotation frother[J]. Coal Engineering, 2017, 49(9): 142−145. doi: 10.11799/ce201709037

    CrossRef Google Scholar

    [4] 罗忠岩. 浮选药剂的国内外研究综述[J]. 当代化工研究, 2018, 35(11): 54−55. doi: 10.3969/j.issn.1672-8114.2018.11.030

    CrossRef Google Scholar

    LUO Z Y. An overview of flotation reagent in domestic and abroad[J]. Modern Chemical Research, 2018, 35(11): 54−55. doi: 10.3969/j.issn.1672-8114.2018.11.030

    CrossRef Google Scholar

    [5] 胡熙庚, 黄和慰. 浮选理论与工艺[M]. 长沙: 中南大学出版社, 1991.

    Google Scholar

    HU X G, HUANG H W. Flotation theory and technology[M]. Changsha: Central South University Press, 1991.

    Google Scholar

    [6] 胡岳华. 矿物浮选[M]. 长沙: 中南工业大学出版社, 2014.

    Google Scholar

    HU Y H. Ore flotation[M]. Changsha: Central South University of Technology Press, 2014.

    Google Scholar

    [7] 龚明光. 泡沫浮选[M]. 北京: 冶金工业出版社, 2007.

    Google Scholar

    GONG M G. Froth flotation[M]. Beijing: Metallurgical Industry Press, 2007.

    Google Scholar

    [8] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2016.

    Google Scholar

    XIE G Y. Mineral processing[M]. Xuzhou: China University of Mining and Technology Press, 2016.

    Google Scholar

    [9] 刘文刚, 魏德洲, 崔宝玉, 等. 新型捕收剂在赤铁矿反浮选中的应用[J]. 东北大学学报(自然科学版), 2011, 32(4): 575−578. doi: 10.3969/j.issn.1005-3026.2011.04.030

    CrossRef Google Scholar

    LIU W G, WEI D Z, CUI B Y, et al. Application of a new collector in reverse flotation of hematite[J]. Journal of Northeastern University (Natural Science), 2011, 32(4): 575−578. doi: 10.3969/j.issn.1005-3026.2011.04.030

    CrossRef Google Scholar

    [10] 朱玉霜, 朱建光. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996.

    Google Scholar

    ZHU Y S, ZHU J G. Chemical principles of flotation reagents[M]. Changsha: Central South University of Technology Press, 1996.

    Google Scholar

    [11] 董贞允, 韩毓丽, 孙小凤. P1—MPA新合成起泡剂[J]. 有色金属(选矿部分), 1982(3): 4−10.

    Google Scholar

    DONG Z Y, HAN Y L, SUN X F. New synthetic frother for P1—MPA[J]. Nonferrous Metals(Mineral processing section), 1982(3): 4−10.

    Google Scholar

    [12] 朱一民. 1, 1, 3-三乙氧基丁烷与二丙基二醇丁醚的起泡性能[J]. 矿产保护与利用, 2011(4): 28−30. doi: 10.3969/j.issn.1001-0076.2011.04.008

    CrossRef Google Scholar

    ZHU Y M. Foaming properties of 1, 1, 3-triethoxy butane and dipropyl glycol butyl ether[J]. Conservation and Utilization of Mineral Resources, 2011(4): 28−30. doi: 10.3969/j.issn.1001-0076.2011.04.008

    CrossRef Google Scholar

    [13] 丁大森, 曹光明, 李永战. 新药剂的研制与推广应用[J]. 有色金属(选矿部分), 2003(1): 30−33.

    Google Scholar

    DIN D S, CAO G M, LI Y Z. Development and application of new drug[J]. Nonferrous Metals(Mineral processing section), 2003(1): 30−33.

    Google Scholar

    [14] Somasundaran, P., et al. 12th IMPC[Z] San Paulo, 1977.

    Google Scholar

    [15] 宋庆福, 周高云. 几种合成起泡剂的应用实践[J]. 矿冶, 2000(1): 36−40. doi: 10.3969/j.issn.1005-7854.2000.01.008

    CrossRef Google Scholar

    SONG Q F, ZHOU G Y. Application of several synthen thetic frothers[J]. Mining and Metallurgy, 2000(1): 36−40. doi: 10.3969/j.issn.1005-7854.2000.01.008

    CrossRef Google Scholar

    [16] 周高云, 曾新民, 刘元科, 等. 新起泡剂BK-206在金川镍矿的应用研究[J]. 有色金属(选矿部分), 2000(6): 32−35.

    Google Scholar

    ZHOU G Y, ZENG X M, LIU Y K, et al. Application of a new frother BK-206 in Jinchuan nickel mine[J]. Nonferrous Metals(Mineral processing section), 2000(6): 32−35.

    Google Scholar

    [17] 周高云. 起泡剂BK-206在铅锌矿的应用研究[J]. 有色金属(选矿部分), 2001(6): 32−35.

    Google Scholar

    ZHOU G Y. Study on application of frother BK-206 in lead-zinc ore[J]. Nonferrous Metals(Mineral processing section), 2001(6): 32−35.

    Google Scholar

    [18] 曾培, 欧乐明, 冯其明, 等. 起泡剂MIBC和BK-201的浮选泡沫特性[J]. 中国有色金属学报, 2015, 25(8): 2276−2283. doi: 10.19476/j.ysxb.1004.0609.2015.08.031

    CrossRef Google Scholar

    ZENG P, OU L M, FENG Q M, et al. Froth characteristic of MIBC and BK-201 frothers[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2276−2283. doi: 10.19476/j.ysxb.1004.0609.2015.08.031

    CrossRef Google Scholar

    [19] 苏建芳, 王中明, 刘书杰, 等. 新型选硫药剂AT608及BK204在安徽某铁矿硫浮选中的应用[J]. 有色金属(选矿部分), 2013(z1): 253−255+263.

    Google Scholar

    SU J F, WANG Z M, LIU S J, et al. Application of new sulfur separation agents AT608 and BK204 in sulfur flotation of an Anhui iron ore[J]. Nonferrous Metals(Mineral processing section), 2013(z1): 253−255+263.

    Google Scholar

    [20] 彭远伦, 凌石生, 罗科华. 云南某铜矿特效起泡剂BK208工业应用实践[J]. 有色金属(选矿部分), 2022(1): 138−141.

    Google Scholar

    PENG Y L, LING S S, LUO K H. Industrial application of special frother BK208 in copper mine of Yunnan[J]. Nonferrous Metals(Mineral processing section), 2022(1): 138−141.

    Google Scholar

    [21] 刘曙. RB1起泡剂在浮硫作业中的应用[J]. 金属矿山, 1998(1): 50.

    Google Scholar

    LIU S. Application of RB1 frother in sulfur floating operation[J]. Metal Mine, 1998(1): 50.

    Google Scholar

    [22] 朱建光, 朱玉霜. RB3起泡剂对铅锌硫化矿的浮选性能[J]. 矿冶工程, 1994(4): 20−23+26.

    Google Scholar

    ZHU J G, ZHU Y S. Flotation performance of RB3 frother in lead-zinc sulfide ore[J]. Mining and Metallurgical Engineering, 1994(4): 20−23+26.

    Google Scholar

    [23] 朱建光, 朱玉霜. RB系列起泡剂浮选铜矿石试验[J]. 有色矿山, 1995(5): 26−31.

    Google Scholar

    ZHU J G, ZHU Y S. Experiment on flotation of copper mine with RB series frothers[J]. Nonferrous Mines, 1995(5): 26−31.

    Google Scholar

    [24] 余云柏. 起泡剂730A在硫化铅锌矿分选中的研究与实践[J]. 有色金属(选矿部分), 2002(4): 37−38+30.

    Google Scholar

    YU Y B. Research and practice of foaming agent 730A in the separation of lead-zinc sulfide ore[J]. Nonferrous Metals(Mineral processing section), 2002(4): 37−38+30.

    Google Scholar

    [25] 刘述忠, 李晓阳, 杨新华, 等. 氧化铜矿浮选的新起泡剂[J]. 金属矿山, 2004(4): 41−43. doi: 10.3321/j.issn:1001-1250.2004.04.014

    CrossRef Google Scholar

    LIU S Z, LI X Y, YANG X H, et al. New frother for oxide copper mine flotation[J]. Metal Mine, 2004(4): 41−43. doi: 10.3321/j.issn:1001-1250.2004.04.014

    CrossRef Google Scholar

    [26] 胡卫新, 刘炯天, 李延峰, 等. 浮选柱选用适宜起泡剂的试验研究[J]. 矿山机械, 2010, 38(7): 98−101.

    Google Scholar

    HU W X, LIU J T, LI Y F, et al. Experimental research on selecting the optimum frother for the fl otation column[J]. Mining & Processing Equipment, 2010, 38(7): 98−101.

    Google Scholar

    [27] 王雅言. 新型浮选起泡剂—11号油[J]. 有色金属(选矿部分), 1988(6): 56−57.

    Google Scholar

    WANG Y Y. New flotation frother-No. 11 oil[J]. Nonferrous Metals(Mineral processing section), 1988(6): 56−57.

    Google Scholar

    [28] 许善. BQ-2新型高效起泡剂工业试验和生产实践[J]. 黄金, 1993(4): 48−49.

    Google Scholar

    XU S. Industrial test and production practice of BQ-2 new effervescent agent[J]. Gold, 1993(4): 48−49.

    Google Scholar

    [29] 吕金玲, 马广清, 杨元章, 等. 矿友-321新型起泡剂的开发应用[J]. 有色金属(选矿部分), 1999(6): 19−21+25.

    Google Scholar

    LU J L, MA G Q, YANG Y Z, et al. Development and application of a new frother for Mine -321[J]. Nonferrous Metals(Mineral processing section), 1999(6): 19−21+25.

    Google Scholar

    [30] 罗传胜, 雷鸣. 新型起泡剂W-701浮选铜录山低品位高含泥氧化铜矿石的研究[J]. 矿产综合利用, 2000(4): 25−28. doi: 10.3969/j.issn.1000-6532.2000.04.008

    CrossRef Google Scholar

    LUO C S, LEI M. Flotation of low-grade oxidized copper ores using new type of frother W-701[J]. Multipurpose Utilization of Mineral Resources, 2000(4): 25−28. doi: 10.3969/j.issn.1000-6532.2000.04.008

    CrossRef Google Scholar

    [31] 李永战, 丁大森, 尹新玉, 等. 新型捕收起泡剂NXP-1浮选铜硫矿石的工艺研究与应用[J]. 有色金属(选矿部分), 2001(5): 27−28+31.

    Google Scholar

    LI Y Z, DING D S, YI X Y, et al. Research and application of new collector frother NXP-1 in flotation of copper sulfide ore[J]. Nonferrous Metals(Mineral processing section), 2001(5): 27−28+31.

    Google Scholar

    [32] 柴垣民, 王忠民. 新型起泡剂SDJ-2在铜矿峪矿选矿厂的应用研究[J]. 有色金属(选矿部分), 2001(5): 29−31.

    Google Scholar

    CHAI Y M, WANG Z M. Study on application of new frother SDJ-2 in concentrator of Tongkuangyu[J]. Nonferrous Metals(Mineral processing section), 2001(5): 29−31.

    Google Scholar

    [33] 罗廉明, 顾德付, 胡立嵩. 介绍一种新型起泡剂[J]. 国外金属矿选矿, 2001(12): 10−12.

    Google Scholar

    LUO L M, GU D F, HU L S. A new frother is introduced[J]. Metallic Ore Dressing Abroad, 2001(12): 10−12.

    Google Scholar

    [34] 刘安平, 尤六亿. 新型起泡剂SK96在梅山选矿厂的应用研究[J]. 金属矿山, 2001(12): 43−45. doi: 10.3321/j.issn:1001-1250.2001.12.013

    CrossRef Google Scholar

    LIU A P, YOU L Y. Application research of new frother SK96 in meishan concentrator[J]. Metal Mine, 2001(12): 43−45. doi: 10.3321/j.issn:1001-1250.2001.12.013

    CrossRef Google Scholar

    [35] 吕金玲, 杨文柱. 新型起泡剂矿友-322[J]. 有色金属(选矿部分), 2002(5): 40−41.

    Google Scholar

    LU J L, YANG W Z. New frother mine friend-322[J]. Nonferrous Metals(Mineral processing section), 2002(5): 40−41.

    Google Scholar

    [36] 万盛辉. YC-111起泡剂在德兴铜矿的应用[J]. 有色金属(选矿部分), 2004(5): 43−44+9.

    Google Scholar

    WAN S H. Application of frother YC-111 in Dexing copper mine[J]. Nonferrous Metals(Mineral processing section), 2004(5): 43−44+9.

    Google Scholar

    [37] 俞国庆. A-200起泡剂选钼试验研究[J]. 中国钼业, 2007(1): 20−22.

    Google Scholar

    YU G Q. Study on the experiment of A-200 frother flotation molybdenum ore[J]. China Molybdenum Industry, 2007(1): 20−22.

    Google Scholar

    [38] 钟在定, 王永超, 温晓婵. 新型JM-208起泡剂在钼浮选中的应用研究[J]. 金属矿山, 2009(9): 102−103+119. doi: 10.3321/j.issn:1001-1250.2009.09.025

    CrossRef Google Scholar

    ZHONG Z D, WANG Y C, WEN X C. Application of new frother JM-208 in the flotation of molybdenum ore[J]. Metal Mine, 2009(9): 102−103+119. doi: 10.3321/j.issn:1001-1250.2009.09.025

    CrossRef Google Scholar

    [39] 廖佳, 李松春, 李霞, 等. 新型起泡剂750B在铅锌矿浮选中的应用研究[J]. 有色金属(选矿部分), 2014(4): 92−95.

    Google Scholar

    LIAO J, LI S C, LI X, et al. Study on application of a novel frother of 750B in lead-zinc ore flotation[J]. Nonferrous Metals(Mineral processing section), 2014(4): 92−95.

    Google Scholar

    [40] 杨自立, 马子龙, 桂夏辉, 等. 新型起泡剂250A对安徽某铜矿石的浮选效果[J]. 金属矿山, 2015(11): 78−81. doi: 10.3969/j.issn.1001-1250.2015.11.017

    CrossRef Google Scholar

    YANG Z L, MA Z L, GUI X H, et al. Flotation performance of the new frother 250A on a copper ore in Anhui[J]. Metal Mine, 2015(11): 78−81. doi: 10.3969/j.issn.1001-1250.2015.11.017

    CrossRef Google Scholar

    [41] 田小松, 高利坤. 新型高效起泡剂HCCL在羊拉铜矿的应用研究[J]. 价值工程, 2015, 34(32): 129−131. doi: 10.14018/j.cnki.cn13-1085/n.2015.32.047

    CrossRef Google Scholar

    TIAN X S, GAO L K. Study on the application of new frother HCCL in Yangla copper mine[J]. Value Engineering, 2015, 34(32): 129−131. doi: 10.14018/j.cnki.cn13-1085/n.2015.32.047

    CrossRef Google Scholar

    [42] 李了艳, 钟宏, 方若晨. 新型起泡剂FG25在硫化铜矿和铅锌矿浮选中的应用研究[J]. 矿冶工程, 2017, 37(3): 43−46. doi: 10.3969/j.issn.0253-6099.2017.03.011

    CrossRef Google Scholar

    LI L Y, ZHONG H, FANG R C. Application of new frother FG25 in flotation of copper sulfide ore and lead-zinc ore[J]. Mining and Metallurgical Engineering, 2017, 37(3): 43−46. doi: 10.3969/j.issn.0253-6099.2017.03.011

    CrossRef Google Scholar

    [43] 张月, 吴金鑫, 王恩祥, 等. 新型高效起泡剂HG-1在钼矿浮选中的应用研究[J]. 中国钼业, 2019, 43(2): 26−30. doi: 10.13384/j.cnki.cmi.1006-2602.2019.02.006

    CrossRef Google Scholar

    ZHANG Y, WU J X, WANG E X, et al. Application of new high-efficiency HG-1 foaming agent in molybdenum flotation[J]. China Molybdenum Industry, 2019, 43(2): 26−30. doi: 10.13384/j.cnki.cmi.1006-2602.2019.02.006

    CrossRef Google Scholar

    [44] 张海龙, 李乔松, 关蕴, 等. A-3新型起泡剂在某铜矿山浮选应用研究[J]. 有色矿冶, 2021, 37(4): 22−24. doi: 10.3969/j.issn.1007-967X.2021.04.006

    CrossRef Google Scholar

    ZHANG H L, LI Q S, GUAN Y, et al. Application of A-3 new foaming agent in flotation of a copper mine[J]. Non-ferrous Mining and Metallurgy, 2021, 37(4): 22−24. doi: 10.3969/j.issn.1007-967X.2021.04.006

    CrossRef Google Scholar

    [45] 侯鹏辉. 煤泥浮选起泡剂的优化试验[J]. 洁净煤技术, 2012, 18(4): 13−15+29.

    Google Scholar

    HOU P H. Optimization test of frother for slime flotation[J]. Journal of Clean Coal Technology, 2012, 18(4): 13−15+29.

    Google Scholar

    [46] 邓维亮, 郑旭, 柳振星. 起泡剂730A与松醇油在昆钢大红山铁矿150万t/a选矿厂的生产应用[J]. 有色金属(选矿部分), 2015(3): 87−90.

    Google Scholar

    DENG W L, ZHENG X, LIU Z X. Production application of frothers between 730A and terpineol oil in 1.5M t/a dressing plant of Dahongshan iron mine of Kunsteel[J]. Nonferrous Metals(Mineral processing section), 2015(3): 87−90.

    Google Scholar

    [47] 刘述忠, 郭万富, 李宝铸, 等. 福建丁家山铅锌硫化矿组合起泡剂优化浮选[J]. 有色金属工程, 2015, 5(6): 55−59. doi: 10.3969/j.issn.2095-1744.2015.06.013

    CrossRef Google Scholar

    LIU S Z, GUO W F, LI B Z, et al. Flotation technology optimization of lead-zinc sulfide ore in Fujian Dingjiashan mine by combined frother Nonferrous[J]. Metals Engineering, 2015, 5(6): 55−59. doi: 10.3969/j.issn.2095-1744.2015.06.013

    CrossRef Google Scholar

    [48] 郭万富, 黄石, 陈享享, 等. 组合起泡剂改进硫铁矿浮选工艺试验研究[J]. 化工矿物与加工, 2016, 45(2): 19−22. doi: 10.16283/j.cnki.hgkwyjg.2016.02.006

    CrossRef Google Scholar

    GUO W F, HUANG S, CHEN X X, et al. Experimental research on improing gpyrrhotite and pyrite flotation process by combined frother[J]. Industrial Minerals & Processing, 2016, 45(2): 19−22. doi: 10.16283/j.cnki.hgkwyjg.2016.02.006

    CrossRef Google Scholar

    [49] 林上勇, 曹学锋, 孙伟, 等. 应用组合起泡剂优化黑、白钨混合浮选[J]. 有色金属工程, 2018, 8(2): 101−106. doi: 10.3390/met8020101

    CrossRef Google Scholar

    LIN S Y, CAO X F, SUN W, et al. Optimizing bulk flotation of wolframite and scheelite by assemble foaming agent[J]. Metals Engineering, 2018, 8(2): 101−106. doi: 10.3390/met8020101

    CrossRef Google Scholar

    [50] 郭芳余, 黄露露, 何琳等. 复配起泡剂强化低阶煤浮选的试验研究[J]. 选煤技术, 2021(1): 92−97.

    Google Scholar

    GUO F Y, HUANG L L, HE L, et al. Experimental study on enhancement of low-rank coal flotation with compound frother[J]. Goal Preparation Technology, 2021(1): 92−97.

    Google Scholar

    [51] 曹文学. 浅谈浮选起泡剂的泡沫性能及在选矿中的应用[J]. 科技视界, 2020(28): 119−120.

    Google Scholar

    CAO W X. The foam property of flotation frother and its application in mineral processing are discussed briefly[J]. Science& Technology Vision, 2020(28): 119−120.

    Google Scholar

    [52] 刘德生, 陈小榆, 周承富. 温度对泡沫稳定性的影响[J]. 钻井液与完井液, 2006(4): 10−12+86. doi: 10.3969/j.issn.1001-5620.2006.04.004

    CrossRef Google Scholar

    LIU D S, CHEN X Y, ZHOU C F. Effects of temperature on the stability of foam[J]. Drilling Fluid & Completion Fluid, 2006(4): 10−12+86. doi: 10.3969/j.issn.1001-5620.2006.04.004

    CrossRef Google Scholar

    [53] 孙烜, 苏宇峰, 魏博磊, 等. 温度和浓度对发泡剂表面张力和泡沫稳定性的影响[J]. 墙材革新与建筑节能, 2016, 214(9): 28−32. doi: 10.3969/j.issn.1006-9135.2016.09.026

    CrossRef Google Scholar

    SUN X, SU Y F, WEI B L, et al. Effect of temperature and concentration on surface tension and foam stability of frother[J]. Wall Materials Innovation & Energy Saving in Buildings, 2016, 214(9): 28−32. doi: 10.3969/j.issn.1006-9135.2016.09.026

    CrossRef Google Scholar

    [54] 陈楠, 王治红, 刘友权, 等. 温度压力下起泡剂的起泡性和泡沫稳定性研究[J]. 石油与天然气化工, 2017, 46(5): 65−68. doi: 10.3969/j.issn.1007-3426.2017.05.013

    CrossRef Google Scholar

    CHEN N, WANG Z H, LIU Y Q, et al. Research on foaming ability and foam stability of foaming agent at the temperature and pressure[J]. Chemical Engineering of Oil and Gas, 2017, 46(5): 65−68. doi: 10.3969/j.issn.1007-3426.2017.05.013

    CrossRef Google Scholar

    [55] CHUN YONG NG, YANG B Y, HANGIL PARK, et al. Improvement of dynamic foam stability with low-frequency acoustic sound[J]. Minerals Engineering, 2022, 184: 107654. doi: 10.1016/j.mineng.2022.107654

    CrossRef Google Scholar

    [56] 薛托托. 溶剂极性对其发泡性能的影响机理研究[D]. 西安: 西安石油大学, 2019.

    Google Scholar

    XUE T T. Study on the influence of solvent polarity on its foaming properties[D]. Xi'an: Xi 'an Shiyou University, 2019.

    Google Scholar

    [57] 赵龙梅, 冯莉, 燕传勇, 等. 常用起泡剂起泡性能的研究[J]. 中国科技论文在线, 2010, 5(6): 419−422.

    Google Scholar

    ZHAO L M, FENG L, YAN C Y, et al. The foaming properties of common frother[J]. Sciencepaper Online, 2010, 5(6): 419−422.

    Google Scholar

    [58] 郑继龙. 分子结构对起泡剂泡沫性能的影响[J]. 应用科技, 2021, 48(2): 116−119.

    Google Scholar

    ZHENG J L. Study on the influence of molecular structure on the foam properties of foaming agent[J]. Applied Science and Application, 2021, 48(2): 116−119.

    Google Scholar

    [59] HUANG B, ZHOU M M, WANG Z Y, et al. The influence of functional groups in frothers on foaming performance and foam stability[J]. Journal of Mining Science and Technology, 2022, 7(3): 371−380.

    Google Scholar

    [60] KIRSTEN C CORIN, SARAH TETLOW, MALIBONGWE S MANONO. Considering the action of frothers under degrading water quality[J]. Minerals Engineering, 2022, 181: 107546. doi: 10.1016/j.mineng.2022.107546

    CrossRef Google Scholar

    [61] 蒋昊, 彭伟文, 杨沁红, 等. 阴离子-非离子组合药剂对一水硬铝石浮选和泡沫稳定性的影响[J]. 中国有色金属学报, 2017, 27(8): 1708−1714.

    Google Scholar

    JIANG H, PENG W W, YANG Q H, et al. Effect of mixed anionic-nonionic reagents on flotation of diaspore and stability of froth[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1708−1714.

    Google Scholar

    [62] ZHENYU ZHANG, MIN QIAO, HONGXIA ZHAO, et al. Effect of mixed surfactants on foam stabilization: A molecular dynamics simulation[J]. Journal of Molecular Liquids, 2022, 365: 120096. doi: 10.1016/j.molliq.2022.120096

    CrossRef Google Scholar

    [63] 吴轶君, 孙琳, 蒲万芬. 高温下高矿化度对泡沫性能的影响[J]. 石油化工, 2017, 46(5): 619−625. doi: 10.3969/j.issn.1000-8144.2017.05.016

    CrossRef Google Scholar

    WU Y J, SUN L, PU W F. Effect of salinity on foaming properties at high temperature[J]. Petrochemical Technology, 2017, 46(5): 619−625. doi: 10.3969/j.issn.1000-8144.2017.05.016

    CrossRef Google Scholar

    [64] 谭佳琨, 梁龙, 彭耀丽, 等. 煤泥浮选过程中粒度对泡沫性质的影响[J]. 中国矿业大学学报, 2019, 48(1): 195−203.

    Google Scholar

    TAN J K, LIANG L, PENG Y L, et al. Effect of particle size on the froth property in coal flotation[J]. Journal of China University of Mining & Technology, 2019, 48(1): 195−203.

    Google Scholar

    [65] YAFENG FU, WANZHONG YIN, JIN YAO, et al. Study on stability of flotation foam influenced by particle effect of chlorite[J]. Journal of Central South University of Science and Technology, 2018, 49(8): 1857−1862.

    Google Scholar

    [66] 赵一帆, 来庆腾, 廖寅飞, 等. 硫化-胺盐浮选体系中矿泥对泡沫稳定性的影响[J]. 矿产保护与利用, 2017(3): 52−57+64.

    Google Scholar

    ZHAO Y F, LAI Q T, LIAO Y F, et al. Effect of slime on foam stability in ammonium sulfide flotation system[J]. Conservation and Utilization of Mineral Resources, 2017(3): 52−57+64.

    Google Scholar

    [67] 张阳, 燕永利, 奚琪, 等. SiO2纳米颗粒对水相泡沫稳定性的影响[J]. 日用化学工业, 2020, 50(1): 26−31.

    Google Scholar

    ZHANG Y, YAN Y L, XI Q, et al. Effects of SiO2 nanoparticles on the stability of aqueous foams[J]. China Surfactant Detergent & Cosmetics, 2020, 50(1): 26−31.

    Google Scholar

    [68] 岳野. 改性纳米SiO2颗粒对泡沫稳定性的影响研究[J]. 当代化工, 2020, 49(3): 597−600.

    Google Scholar

    YUE Y. Influence of modified silicon dioxide particles on the stability of foams[J]. Contemporary Chemical Industry, 2020, 49(3): 597−600.

    Google Scholar

    [69] DU R T, LI N, CUI Z J, et al. Effect of janus nanoparticles on foam stability[J]. Journal of Physics: Conference Series, 2023, 2418(1).

    Google Scholar

    [70] ZHANG Y B, CHEN J H, LI Y Q, et al. Adsorption structures of frothers at gas–liquid interface using DFT method[J]. Journal of Central South University, 2019, 26(3): 536−549. doi: 10.1007/s11771-019-4025-7

    CrossRef Google Scholar

    [71] 吴刚. 无机盐对表面活性剂及其复合体系泡沫稳定性影响的机理研究[D]. 青岛: 中国石油大学(华东), 2017.

    Google Scholar

    WU G. Effect of inorganic salts on foam stability of surfactant and its composite systems[D]. Qingdao: China University of Petroleum (East China), 2017.

    Google Scholar

    [72] 朱一民, 杨雪莹, 乘舟越洋, 等. 不同胺类捕收剂泡沫性能及其机理研究[J]. 金属矿山, 2020(7): 99−104.

    Google Scholar

    ZHU Y M, YANG X Y, CHENG Z Y Y, et al. Study on the foam properties and mechanisms of different amines collectors[J]. Metal Mine, 2020(7): 99−104.

    Google Scholar

    [73] 乘舟越洋, 朱一民, 毛毛, 等. 5种非硫化矿捕收剂泡沫性能及机理研究[C]//2018年第九届中国矿业科技大会论文集. 2018: 75-79.

    Google Scholar

    CHENG Z Y Y, ZHU Y M, MAO M, et al. Study on foam properties and mechanism of five kinds of unsulfide ore collector[C]//Proceedings of the 9th China Mining Science and Technology Conference 2018. 2018: 75-79.

    Google Scholar

    [74] XIMEI L, LINPING Q, SHUMING W, et al. Adsorption configuration of dodecylamine at gas–liquid interface and its relationship with foam stability: MD simulation and ToF-SIMS investigation[J]. Minerals Engineering, 2021, 164: 106830. doi: 10.1016/j.mineng.2021.106830

    CrossRef Google Scholar

    [75] RONGJIAO L, XIMEI L, SHUMING W, et al. Three-phase froth stability in hematite flotation using DDA as a collector[J]. Minerals Engineering, 2023, 195: 108023. doi: 10.1016/j.mineng.2023.108023

    CrossRef Google Scholar

    [76] XIMEI L, QIQIANG L, SHUMING W, et al. Effect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Configuration of Dodecylamine at the Gas-Liquid Interface[J]. Langmuir, 2021, 37(3): 1235−1246. doi: 10.1021/acs.langmuir.0c03248

    CrossRef Google Scholar

    [77] PANDEY SAMIR, BAGWE RAHUL P, SHAH DINESH O. Effect of counterions on surface and foaming properties of dodecyl sulfate[J]. Journal of Colloid and Interface Science, 2003, 267(1): 160−166. doi: 10.1016/j.jcis.2003.06.001

    CrossRef Google Scholar

    [78] SCHELERO NATASCHA, HEDICKE GABI, LINSE PER, et al. Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate[J]. Journal of Physical Chemistry B, 2010, 114(47): 15523−15529. doi: 10.1021/jp1070488

    CrossRef Google Scholar

    [79] 郭芳余. 混合表面活性剂强化低阶煤浮选泡沫稳定性机理研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    GUO F Y. Study on foam stability mechanism of low rank coal flotation enhanced by mixed surfactant[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [80] 李国胜. 浮选泡沫的稳定性调控及粉煤灰脱炭研究[D]. 徐州: 中国矿业大学, 2013.

    Google Scholar

    LI G S. Regulation of flotation froth stability and removal of unburned-carbon coal fly ash[D]. Xuzhou: China University of Mining and Technology, 2013.

    Google Scholar

    [81] WANG J L, ANH V. NGUYEN, SAEED FARROKHPAY. Effects of surface rheology and surface potential on foam stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 488: 70−81.

    Google Scholar

    [82] BAI B J, REID B. GRIGG, YI SVEC, WU Y F. Adsorption of a foam agent porous sandstone and its effect on foam stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 353(2/3): 189−196.

    Google Scholar

    [83] 孟晓光. 捕收剂和起泡剂作用机理分析[J]. 煤炭加工与综合利用, 2017(5): 44−46.

    Google Scholar

    MENG X G. Analysis of action mechanism of collector and foaming agent[J]. Coal Processing and Comprehensive Utilization, 2017(5): 44−46.

    Google Scholar

    [84] 沈笑君, 刘元晖. 浮选捕收剂与起泡剂的相互作用研究[J]. 洁净煤技术, 2009, 15(1): 14−16.

    Google Scholar

    SHEN X J, LIU Y H. Study on the interaction between the collectors and the frothers in flotation[J]. Journal of Clean Coal Technology, 2009, 15(1): 14−16.

    Google Scholar

    [85] 程雅丽. 煤泥浮选中捕收剂与起泡剂交互作用机理的研究[D]. 北京市: 中国矿业大学(北京), 2021.

    Google Scholar

    CHENG Y L. Study on the interaction mechanism of collector and frother in slime flotation[D]. Beijing: China University of Mining and Technology (Beijing), 2021.

    Google Scholar

    [86] CAO Q B, CHENG J H, WEN S M, et al. Synergistic effect of dodecyl sulfonate on apatite flotation with fatty acid collector[J]. Separation Science and Technology, 2016, 51(8): 1389−1396. doi: 10.1080/01496395.2016.1147467

    CrossRef Google Scholar

    [87] CHENG R J, LI C X, LIU X, et al. Synergism of octane phenol polyoxyethylene-10 and oleic acid in apatite flotation[J]. Physicochemical Problems of Mineral Processing, 2017, 53(2): 1214−1227.

    Google Scholar

    [88] KAPIAMBA, K FABRICE, MERVEILLE KIMPIAB. The effects of partially replacing amine collectors by a commercial frother in a reverse cationic hematite flotation[J]. Heliyon, 2021, 7(3): e06559.

    Google Scholar

    [89] VANDERSON E. MATOS, STEPHÂNIA C. S. NOGUEIRA, GILBERTO R. SILVA, et al. Effects of surfactants combination on iron ore flotation[J]. Minerals Engineering, 2022, 190, 107910.

    Google Scholar

    [90] KHANDJAMTS BATJARGAL, ONUR GUVEN, ORHAN OZDEMIR, et al. Frothing performance of frother-collector mixtures as determined by dynamic foam analyzer and its implications in flotation[J]. Minerals, 2023, 13(2): 242.

    Google Scholar

    [91] 汤家焰, 张静茹, 李养岚, 等. APE表面活性剂在磷矿浮选脱硅中的增效作用[J]. 非金属矿, 2019, 42(6): 49−52. doi: 10.3969/j.issn.1000-8098.2019.06.013

    CrossRef Google Scholar

    TANG J Y, ZHANG J R, LI Y L, et al. Synergistic effect of APE surfactants on phosphorus ore flotation desilication[J]. Non-Metallic Mines, 2019, 42(6): 49−52. doi: 10.3969/j.issn.1000-8098.2019.06.013

    CrossRef Google Scholar

    [92] 汤家焰, 张静茹, 王志芳, 等. OP表面活性剂在磷矿浮选脱硅中的增效作用[J]. 中国矿业, 2021, 30(1): 121−126.

    Google Scholar

    TANG J Y, ZHANG J R, WANG Z F, et al. Synergistic effect of OP surfactants on phosphorus ore flotation desilication[J]. China Mining Magazine, 2021, 30(1): 121−126.

    Google Scholar

    [93] 王纪镇, 程雅芝, 肖雨辰, 等. 油酸钠/TX-100组合药剂对白钨矿的捕收性能及机理研究[J]. 有色金属(选矿部分), 2019(1): 100−104.

    Google Scholar

    WANG J Z, CHENG Y Z, XIAO Y C, et al. Collecting performance of mixed NaOL/TX-100 for scheelite flotation and its mechanisum[J]. Nonferrous Metals(Mineral processing section), 2019(1): 100−104.

    Google Scholar

    [94] 刘三军, 覃文庆, 刘维, 等. 铝土矿浮选中Tween-20对油酸的增效机理[J]. 中国有色金属学报, 2013, 23(8): 2284−2289.

    Google Scholar

    LIU S J, QIN W Q, LIU W, et al. Synergistic mechanism of Tween-20 to oleic acid in bauxite flotation[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(8): 2284−2289.

    Google Scholar

    [95] 朱海玲, 覃文庆, 陈臣, 等. 阴-非离子复配表面活性剂对白钨矿的低温捕收性能及其应用[J]. 中国有色金属学报, 2016, 26(10): 2188−2196. doi: 10.19476/j.ysxb.1004.0609.2016.10.019

    CrossRef Google Scholar

    ZHU H L, QIN W Q, CHEN C, et al. Low-temperature collecting performance of mixed anionic-nonionic surfactants for scheelite flotation and its application[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10): 2188−2196. doi: 10.19476/j.ysxb.1004.0609.2016.10.019

    CrossRef Google Scholar

    [96] JIA W H, QIN W Q, CHEN C, et al. Collecting performance of vegetable oils in scheelite flotation and differential analysis[J]. Journal of Central South University, 2019, 26(4): 787−795. doi: 10.1007/s11771-019-4048-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2005) PDF downloads(1532) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint