Citation: | FU Qiang, WANG Qing, WEN Ligang. Occurrence State and Potential Recycling Evaluation of Lithium from Fluorite Tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 141-145. doi: 10.13779/j.cnki.issn1001-0076.2022.06.017 |
The occurrence state of lithium in fluorite tailings in Zhejiang was studied while the availability of lithium recovery was evaluated. The process mineralogy research revealed that lithium mainly existed in zinnwaldite, muscovite, and phlogopite, and the average lithium contents in the three types of mica minerals were 4.16%, 0.47% and 0.51%, respectively, and 62.47% of lithium was distributed in zinnwaldite which should be strengthened. However, due to the similar flotation performance of zinnwaldite, muscovite, and phlogopite, the flotation process results in the co-enrichment of these minerals, making it difficult to obtain a high-quality lithium concentrate. Nonetheless, qualified iron lithium mica concentrate can be separated from mica concentrate by high intensity magnetic separation. In addition, the technique can also be used to treat the ore by separating zinnwaldite, limonite and pyrolusite into magnetic products, followed by cationic flotation to obtain an iron-limonite concentrate. Overall, the technical index for either flotation-magnetic separation or magnetic separation-flotation requires further testing to determine its efficacy.
[1] | 王秋舒, 元春华. 全球锂矿供应形势及我国资源安全保障建议[J]. 中国矿业, 2019, 28(5): 1−6. WANG Q S, YUAN C H. The global supply situation of lithium ore and suggestions on resources security in China[J]. China Mining Magazine, 2019, 28(5): 1−6. |
[2] | 杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019, 39(5): 26−40. doi: 10.13779/j.cnki.issn1001-0076.2019.05.004 YANG H P, LIU L, DING G F. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26−40. doi: 10.13779/j.cnki.issn1001-0076.2019.05.004 |
[3] | Choubey K, Kim M, Srivastava R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources[J]. Minerals Engineering, 2016(89): 119−137. |
[4] | 屈金芝, 张艳松, 张艳, 等. 新形势下中国锂矿资源供应安全评价[J]. 中国矿业, 2021, 30(12): 1−7. QU J Z, ZHANG Y S, ZHANG Y , et al. Safety evaluation of lithium resources supply in china under the new situation[J]. China Mining Magazine, 2021, 30(12): 1−7. |
[5] | 吕江涛. 为“锂”走遍天下 锂矿全球争夺战[J]. 中国经济周刊, 2021(21): 66−68. LV J T. Worldwide battle for lithium[J]. China Economic Weekly, 2021(21): 66−68. |
[6] | 马玉宏, 石晶. 理性看待碳酸锂价格上涨[N]. 经济日报, 2022-01-30(005). MA Y H, SHI J. Rational View on Lithium Carbonate Price Rise[N], Economic Daily, 2022-01-30(005). |
[7] | 张宏泉, 文进, 童慧, 等. 锂尾矿资源化再利用现状与前景[J]. 陶瓷, 2021(3): 46−49. ZHANG H Q, WEN J, TONG H , et al. Resource reuse status and prospect of lithium tailings[J]. Ceramics, 2021(3): 46−49. |
[8] | 曹学锋, 张荥斐, 骆任, 等. 国外某萤石矿尾矿中锂铷回收试验[J]. 金属矿山, 2019(1): 201−203. CAO X F, ZHANG X F, LUO R, et al. Experiment on Recovery of Lithium Rubidium from a Fluorite Tailings Abroad[J]. Metal Mine, 2019(1): 201−203. |
[9] | 王威, 常学勇, 柳林, 等. 赣州某钨尾矿中锂的浮选回收与浸出试验[J]. 金属矿山, 2018(11): 185−188. WANG W, CHANG X Y, LIU L, et al. Experiment of Flotation Recovery and Leaching of Lithium from a Tungsten Tailings in Ganzhou[J]. Metal Mine, 2018(11): 185−188. |
[10] | 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用, 2020(6): 110−120. WU X S, SUN Y, WANG D H, et al. Technology status, innovation and prospects of international lithium mine development[J]. Comprehensive Utilization of Mineral Resources, 2020(6): 110−120. |
[11] | 黄莉, 李芳琴, 代涛, 等. 锂金属回收潜力研究−基于现有回收技术与工艺[J]. 矿产保护与利用, 2021, 41(5): 31−37. HUANG L, LI F Q, DAI T, et al. Recycling potential assessment of lithium metal——based on existing recycling technology and process[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 31−37. |
[12] | 孙传尧. 选矿工程师手册[M]. 北京: 冶金工业出版社, 2015: 117. SUN C Y. Mineral processing engineer, s handbook[M]. Beijing: Metallurgical Industry Press, 2015: 117. |
[13] | 李少平, 张俊敏, 迪里努尔·阿不都卡得, 等. 锂云母浮选捕收剂研究现状及展望[J]. 矿产保护与利用, 2020, 40(6): 77−82. LI S P, ZHANG J M, DILINUER A, et al. Research status and prospect of lepidolite flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 77−82. |
[14] | 刘书杰, 王中明. 某长石尾矿中含铷云母的浮选回收试验研究[J]. 矿冶, 2019, 28(5): 38−43. LIU S J, WANG Z M. Experimental study on flotation recovery of rubidium mica from a feldspar tailings[J]. Ming Metallurgy, 2019, 28(5): 38−43. |
[15] | 《矿产资源工业要求手册》编委会编. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2010. “Mineral resources industry requires manual” editorial board. Mineral resources industry requirements handbook [M]. Beijing: 2010. |
Zinnwaldite(1,2,3) occurs as self-shaped flake aggregates
The dissemination characteristics of zinnwaldite in tailings
Flake muscovite (2)associates with sheet phlogopite(1)
The dissemination characteristics of muscovite in tailings
Phlogopite(1,2) disseminates as monomer
The dissemination characteristics of phlogopite in tailings