Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

LIU Yang, TONG Xiong, LV Jinfang, XIE Xian, SONG Qiang, FAN Peiqiang. Research Progress on Flotation Separation of Lead-zinc Sulfide Minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.03.016
Citation: LIU Yang, TONG Xiong, LV Jinfang, XIE Xian, SONG Qiang, FAN Peiqiang. Research Progress on Flotation Separation of Lead-zinc Sulfide Minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.03.016

Research Progress on Flotation Separation of Lead-zinc Sulfide Minerals

More Information
  • Corresponding author: TONG Xiong  
  • Lead and zinc resources are strategic mineral resources in China, and flotation is a common separation method for lead-zinc sulfide minerals. The relationship between the crystal structure and floatability of lead-zinc sulfide minerals was introduced, the influence of pulp environment on lead-zinc minerals flotation separation from the aspects of flotation electrochemical theory and quantum chemistry theory was analyzed, the mechanism of the interaction between reagents and the surface of lead-zinc minerals from the molecular point of view was summarized, and the flotation technology of lead-zinc minerals separation and the application of reagents in production were also summarized. At present, it is difficult to recover lead-zinc minerals resources and there is a lack of novel reagents. Therefore, deeply revealing the mechanism of reagents action and developing new green reagents are one of the research directions of lead-zinc minerals separation in the future.

  • 加载中
  • [1] USGS. Mineral commodity summaries 2022[R]. Reston: USGS, 2022: 97+193.

    Google Scholar

    [2] 江少卿, 徐毅, 孙尚信, 等. 全球铅锌矿资源分布[J]. 地质与资源, 2020, 29(3): 224-232. doi: 10.3969/j.issn.1671-1947.2020.03.003

    CrossRef Google Scholar

    JIANG S Q, XU Y, SUN S X, et al. Distribution of global lead-zinc ore resources[J]. Geology and Resources, 2020, 29(3): 224-232. doi: 10.3969/j.issn.1671-1947.2020.03.003

    CrossRef Google Scholar

    [3] 杨荣林. 浅析我国铅锌矿资源开发现状及可持续发展建议[J]. 世界有色金属, 2018(1): 148+150.

    Google Scholar

    YANG R L. A brief analysis of the development status of lead-zinc ore resources in my country and suggestions for sustainable development[J]. World Nonferrous Metals, 2018(1): 148+150.

    Google Scholar

    [4] 姜美光, 刘全军, 杨俊龙, 等. 新疆某硫化铅锌矿选矿试验研究[J]. 矿冶, 2014, 23(1): 26-30. doi: 10.3969/j.issn.1005-7854.2014.01.007

    CrossRef Google Scholar

    JIANG M G, LIU Q J, YANG J L, et al. Research on beneficiation test of a lead-zinc sulfide mine in Xinjiang[J]. Mining and Metallurgy, 2014, 23(1): 26-30. doi: 10.3969/j.issn.1005-7854.2014.01.007

    CrossRef Google Scholar

    [5] 杨招君, 徐晓衣, 陈龙, 等. 青海某低品位硫化铅锌矿选矿试验研究[J]. 中国矿业, 2021, 30(S2): 276-280.

    Google Scholar

    YANG Z J, XU X Y, CHEN L, et al. Research on beneficiation test of a low-grade lead-zinc sulfide ore in Qinghai[J]. China Mining Industry, 2021, 30(S2): 276-280.

    Google Scholar

    [6] 郭学益, 田庆华, 刘咏, 等. 有色金属资源循环研究应用进展[J]. 中国有色金属学报, 2019, 29(9): 1859-1901.

    Google Scholar

    GUO X Y, TIAN Q H, LIU Y, et al. Research and application progress of non-ferrous metal resource recycling[J]. Chinese Journal of Nonferrous Metals, 2019, 29(9): 1859-1901.

    Google Scholar

    [7] 赵珊茸. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2004: 49-53.

    Google Scholar

    ZHAO S R. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2004: 49-53.

    Google Scholar

    [8] CHEN J H, WANG L, CHEN Y, et al. A DFT study of the effect of natural impurities on the electronic structure of galena[J]. International Journal of Mineral Processing, 2011, 98(3-4): 132-136. doi: 10.1016/j.minpro.2010.11.001

    CrossRef Google Scholar

    [9] Becker U, Greatbanks S P, Rosso K M, et al. An embedding approach for the calculation of STM images: method development and application to galena (PbS)[J]. Journal of Chemical Physics, 1997, 107(18): 7537-7542. doi: 10.1063/1.474992

    CrossRef Google Scholar

    [10] 蓝丽红, 艾光湧, 王佳琪, 等. 含杂质方铅矿的电子结构和光学性质的第一性原理计算[J]. 科学技术与工程, 2017, 17(12): 152-155. doi: 10.3969/j.issn.1671-1815.2017.12.027

    CrossRef Google Scholar

    LAN L H, AI G Y, WANG J Q, et al. First-principles calculation of electronic structure and optical properties of galena with doping[J]. Science Technology and Engineering, 2017, 17(12): 152-155. doi: 10.3969/j.issn.1671-1815.2017.12.027

    CrossRef Google Scholar

    [11] 顾帼华, 钟素姣. 方铅矿磨矿体系表面电化学性质及其对浮选的影响[J]. 中南大学学报(自然科学版), 2008(1): 54-58.

    Google Scholar

    GU Y H, ZHONG S J. Electrochemical properties of the surface of the galena grinding system and its influence on flotation[J]. J. Cent. South Univ. (Science and Technology), 2008(1): 54-58.

    Google Scholar

    [12] 蓝丽红. 晶格缺陷对方铅矿表面性质、药剂分子吸附及电化学行为影响的研究[D]. 南宁: 广西大学, 2012.

    Google Scholar

    LAB L H. Study on the influence of lattice defects on the surface properties, molecular adsorption and electrochemical behavior of galena[D]. Nanning: Guangxi University, 2012.

    Google Scholar

    [13] 秦善, 王长秋. 矿物学基础[M]. 北京: 北京大学出版社, 2006: 45-47.

    Google Scholar

    QIN S, WANG C Q. Foundations of mineralogy[M]. Beijing: Peking University Press, 2006: 45-47.

    Google Scholar

    [14] WITHERS R L, WELBERRY T R, PRING A, et al. 'Soft'phonon modes, structured diffuse scattering and the crystal chemistry of Fe-bearing sphalerites[J]. Journal of Solid State Chemistry, 2005, 178(3): 655-660. doi: 10.1016/j.jssc.2004.12.011

    CrossRef Google Scholar

    [15] FENG B, ZHONG C H, ZHANG L Z, et al. Effect of surface oxidation on the depression of sphalerite by locust bean gum[J]. Minerals Engineering, 2015, 146: 106142.

    Google Scholar

    [16] 李迪恩, 彭明生. 闪锌矿的吸收光谱和颜色的本质[J]. 矿物学报, 1990(1): 29-34. doi: 10.3321/j.issn:1000-4734.1990.01.005

    CrossRef Google Scholar

    LI D E, PENG M S. Absorption spectra and coloration of sphalerite[J]. Acta Minera Sinica, 1990(1): 29-34. doi: 10.3321/j.issn:1000-4734.1990.01.005

    CrossRef Google Scholar

    [17] 陈晔, 陈建华, 郭进. 天然杂质对闪锌矿电子结构和半导体性质的影响[J]. 物理化学学报, 2010, 26(10): 2851-2856. doi: 10.3866/PKU.WHXB20101001

    CrossRef Google Scholar

    CHEN Y, CHEN J H, GUO J. Effect of natural impurities on the electronic structures and semiconducting properties of sphalerite[J]. Acta Physico-Chimica Sinica, 2010, 26(10): 2851-2856. doi: 10.3866/PKU.WHXB20101001

    CrossRef Google Scholar

    [18] 蒋磊. 闪锌矿的生物氧化与化学氧化对比[J]. 金属矿山, 2011(3): 84-86+98.

    Google Scholar

    JIANG L. Comparison of biological oxidation and chemical oxidation of sphalerite[J]. Metal Mines, 2011(3): 84-86+98.

    Google Scholar

    [19] CHEN Y, LIU X M, CHEN J H. Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study[J]. Minerals Engineering, 2021, 165: 106834. doi: 10.1016/j.mineng.2021.106834

    CrossRef Google Scholar

    [20] 陈建华, 王檑, 陈晔, 等. 空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J]. 中国有色金属学报, 2010, 20(9): 1815-1821.

    Google Scholar

    CHEN J H, WANG B, CHEN Y, et al. Density functional theory of effects of vacancy defects on electronic structure and flotation of galena[J]. Chinese Journal of Nonferrous Metals, 2010, 20(9): 1815-1821.

    Google Scholar

    [21] 王国彬, 蓝卓越, 王瑞康, 等. 银含量对方铅矿浮选的影响及其机理研究进展[J]. 黄金科学技术, 2021, 29(5): 749-760.

    Google Scholar

    WANG G B, LAN Z Y, WANG R K, et al. Effect of silver content on galena flotation and research progress on its mechanism[J]. Gold Science and Technology, 2021, 29(5): 749-760.

    Google Scholar

    [22] 陈建华. 硫化矿物浮选晶格缺陷理论[M]. 长沙: 中南大学出版社, 2012: 10-17.

    Google Scholar

    CHEN J H. The theory of lattice defects in sulfide mineral flotation[M]. Changsha: Central South University Press, 2012: 10-17.

    Google Scholar

    [23] SMALLMAN R E. Lattice Defects[J]. Nature, 1968, 220(5171): 1001-1002.

    Google Scholar

    [24] 文书明, 张文彬. 矿物表面药剂吸附层水稳定性理论研究[J]. 有色金属(选矿部分), 1995(6): 34-39.

    Google Scholar

    WEN S M, ZHANG W B. Theoretical study on water stability of adsorbent layer of mineral surface agents[J]. Nonferrous Metals (Mineral Processing Section), 1995(6): 34-39.

    Google Scholar

    [25] 蓝丽红, 陈建华, 李玉琼, 等. 空位缺陷对氧分子在方铅矿(100)表面吸附的影响[J]. 中国有色金属学报, 2012, 22(9): 2626-2635.

    Google Scholar

    LAN L H, CHEN J H, LI Y Q, et al. Effect of vacancy defects on oxygen molecule adsorption on galena surface (100)[J]. Chinese Journal of Nonferrous Metals, 2012, 22(9): 2626-2635.

    Google Scholar

    [26] 印万忠, 孙传尧. 矿物晶体结构与表面特性和可浮性关系的研究[J]. 国外金属矿选矿, 1998(4): 8-11.

    Google Scholar

    YIN W Z, SUN C Y. Study on the relationship between mineral crystal structure, surface properties and floatability[J]. Foreign Metal Mineral Processing, 1998(4): 8-11.

    Google Scholar

    [27] CHEN J H, KE B L, LAN L H, et al. Influence of Ag, Sb, Bi and Zn impurities on electrochemical and flotation behaviour of galena[J]. Minerals Engineering, 2015, 72: 10-16. doi: 10.1016/j.mineng.2014.12.013

    CrossRef Google Scholar

    [28] CHEN J H, CHEN Y, LI Y Q. Quantum-mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface[J]. 中国有色金属学报(英文版), 2010, 20(6): 1121-1130.

    Google Scholar

    [29] SONG B X, DONG X R, QIU X Y, et al. Electronic structure and flotation behavior of Ag-bearing galena[J]. Journal of Alloys and Compounds, 2021, 868(83): 159105.

    Google Scholar

    [30] 陈建华, 曾小钦, 陈晔, 等. 含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J]. 中国有色金属学报, 2010, 20(4): 765-771.

    Google Scholar

    CHEN J H, ZENG X Q, CHEN Y, et al. First-principles calculation of the electronic structure of sphalerite containing vacancies and impurity defects[J]. Chinese Journal of Nonferrous Metals, 2010, 20(4): 765-771.

    Google Scholar

    [31] 傅开彬, 宁燕, 肖军辉, 等. 贵州某铅细粒嵌布的高硫铅锌矿浮选工艺研究[J]. 中国矿业, 2016, 25(5): 111-115. doi: 10.3969/j.issn.1004-4051.2016.05.027

    CrossRef Google Scholar

    FU K B, NING Y, XIAO J H, et al. Research on the flotation process of a high-sulfur lead-zinc ore embedded with lead fine particles in Guizhou[J]. China Mining Industry, 2016, 25(5): 111-115. doi: 10.3969/j.issn.1004-4051.2016.05.027

    CrossRef Google Scholar

    [32] 鱼博, 王宇斌, 王妍, 等. 某铜铅锌多金属硫化矿浮选分离试验研究[J]. 矿业研究与开发, 2020, 40(9): 117-121.

    Google Scholar

    YU B, WANG Y B, WANG Y, et al. Experimental research on flotation separation of a copper-lead-zinc polymetallic sulphide[J]. Ore Mining Research and Development, 2020, 40(9): 117-121.

    Google Scholar

    [33] LIU J, EJTEMAEI M, NGUYEN A V, et al. Surface chemistry of Pb-activated sphalerite[J]. Minerals Engineering, 2020, 145: 106058. doi: 10.1016/j.mineng.2019.106058

    CrossRef Google Scholar

    [34] PENG Y J, GRANO S. Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids[J]. Journal of Colloid and Interface Science, 2010, 347(1): 127-131. doi: 10.1016/j.jcis.2010.03.027

    CrossRef Google Scholar

    [35] WANG X J, QIN W Q, JIAO F, et al. The influence of galvanic interaction on the dissolution and surface composition of galena and pyrite in flotation system[J]. Minerals Engineering, 2020, 156: 106525. doi: 10.1016/j.mineng.2020.106525

    CrossRef Google Scholar

    [36] 王淀佐, 胡岳华, 李柏淡. 硫化矿物无捕收剂浮选对经典浮选理论的挑战[J]. 有色金属, 1992, 44(1): 22-26.

    Google Scholar

    WANG D Z, HU Y H, LI B D. The challenge of collector-free flotation of sulfide minerals to classical flotation theory[J]. Nonferrous Metals, 1992, 44(1): 22-26.

    Google Scholar

    [37] HU Y H, WU M R, LIU R Q, et al. A review on the electrochemistry of galena flotation[J]. Minerals Engineering, 2020, 150: 106272. doi: 10.1016/j.mineng.2020.106272

    CrossRef Google Scholar

    [38] 冯其明, 陈建华. 硫化矿物浮选电化学[M]. 长沙: 中南大学出版社, 2014: 71-83.

    Google Scholar

    FENG Q M, CHEN J H. Electrochemical flotation of sulfide minerals[M]. Changsha: Central South University Press, 2014: 71-83.

    Google Scholar

    [39] CUI W Y, Chen J H, LI Y Q, et al. Interactions of xanthate molecule with different mineral surfaces: a comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry[J]. Minerals Engineering, 2020, 159: 106565. doi: 10.1016/j.mineng.2020.106565

    CrossRef Google Scholar

    [40] CHIMONYO W, CORIN K C, J G. WIESE, et al. Redox potential control during flotation of a sulphide mineral ore[J]. Minerals Engineering, 2017, 110: 57-64. doi: 10.1016/j.mineng.2017.04.011

    CrossRef Google Scholar

    [41] 覃文庆, 姚国成, 顾帼华, 等. 硫化矿物的浮选电化学与浮选行为[J]. 中国有色金属学报, 2011, 21(10): 2669-2677.

    Google Scholar

    QIN W Q, YAO G C, GU W H, et al. Flotation electrochemistry and flotation behavior of sulfide minerals[J]. Chinese Journal of Nonferrous Metals, 2011, 21(10): 2669-2677.

    Google Scholar

    [42] 程琍琍. 含铁闪锌矿的难选铅锌硫化矿电位调控浮选工艺原理与应用[D]. 赣州: 江西理工大学, 2008.

    Google Scholar

    CHENG L L. The principle and application of potential control flotation process for refractory lead-zinc sulfide ore containing iron-bearing sphalerite[D]. Ganzhou: Jiangxi University of Science and Technology, 2008.

    Google Scholar

    [43] 骆任. 某铜铅混合精矿电位调控浮选分离试验的研究[J]. 湖南有色金属, 2014, 30(6): 17-19+59. doi: 10.3969/j.issn.1003-5540.2014.06.006

    CrossRef Google Scholar

    LUO R. Study of a flotation separation of copper and lead concentrates mixed potential regulation[J]. Hunan Nonferrous Metals, 2014, 30(6): 17-19+59. doi: 10.3969/j.issn.1003-5540.2014.06.006

    CrossRef Google Scholar

    [44] 严六明, 朱素华. 分子动力学模拟的理论与实践[M]. 北京: 科学出版社, 2013: 28-35.

    Google Scholar

    YAN L M, ZHU S H. Theory and practice of molecular dynamics simulation[M]. Beijing: Science Press, 2013: 28-35.

    Google Scholar

    [45] 王瑜, 刘建, 曾勇, 等. 量子化学计算在硫化铅锌矿浮选机理中的研究进展[J]. 矿产保护与利用, 2018(3): 37-42+48.

    Google Scholar

    WANG Y, LIU J, ZENG Y, et al. Quantum chemistry calculation in lead-zinc sulfide ore flotation: a review[J]. Conservation and Utilization of Mineral Resources, 2018(3): 37-42+48.

    Google Scholar

    [46] YIN J R, WU W H, XIE W, et al. Influence of line defects on relaxation properties of graphene: a molecular dynamics study[J]. Physica E: Low-dimensional Systems and Nanostructures, 2015, 68: 102-106. doi: 10.1016/j.physe.2014.12.015

    CrossRef Google Scholar

    [47] ZHANG L M, GAO J D, KHOSO S A, et al. A reagent scheme for galena/sphalerite flotation separation: Insights from first-principles calculations[J]. Minerals Engineering, 2021, 167: 106885. doi: 10.1016/j.mineng.2021.106885

    CrossRef Google Scholar

    [48] 罗思岗. 应用分子力学法研究铜离子活化闪锌矿作用机理[J]. 现代矿业, 2012, 27(3): 7-9. doi: 10.3969/j.issn.1674-6082.2012.03.003

    CrossRef Google Scholar

    LUO S G. Application of molecular mechanics to study the mechanism of copper ion-activated sphalerite[J]. Modern Mining, 2012, 27(3): 7-9. doi: 10.3969/j.issn.1674-6082.2012.03.003

    CrossRef Google Scholar

    [49] 曹飞, 孙传尧. 硫化矿浮选机理的量子化学研究进展[J]. 有色金属(选矿部分), 2012(5): 49-52+56. doi: 10.3969/j.issn.1671-9492.2012.05.012

    CrossRef Google Scholar

    CAO F, SUN C Y. The research progress of quantum chemistry on flotation mechanism of sulfide ores[J]. Nonferrous Metals (Mineral Processing Section), 2012(5): 49-52+56. doi: 10.3969/j.issn.1671-9492.2012.05.012

    CrossRef Google Scholar

    [50] 何桂春, 蒋巍, 项华妹, 等. 密度泛函理论及其在选矿中的应用[J]. 有色金属科学与工程, 2014, 5(2): 62-66.

    Google Scholar

    HE G C, JIANG W, XIANG H M, et al. Density functional theory and its application in mineral processing[J]. Nonferrous Metal Science and Engineering, 2014, 5(2): 62-66.

    Google Scholar

    [51] DENG Z B, TONG X, HUANG L Y, et al. Density functional theory study of H2O adsorption on different sphalerite surfaces[J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 82-88.

    Google Scholar

    [52] 孙伟, 胡岳华, 邱冠周, 等. 闪锌矿(110)表面离子吸附的动力学模拟[J]. 中国有色金属学报, 2002(1): 187-190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    CrossRef Google Scholar

    SUN W, HU Y H, QIU G Z, et al. Kinetic simulation of ion adsorption on sphalerite (110) surface[J]. Chinese Journal of Nonferrous Metals, 2002(1): 187-190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    CrossRef Google Scholar

    [53] 浦家扬. 闪锌矿的物理化学特性及其浮选行为的研究[J]. 国外金属矿选矿, 1985(5): 33-43.

    Google Scholar

    PU J Y. Research on physicochemical property and flotation behavior of sphalerite[J]. Metallic Ore Dressing Abroad, 1985(5): 33-43.

    Google Scholar

    [54] 陈建华, 陈晔, 曾小钦, 等. 铁杂质对闪锌矿表面电子结构及活化影响的第一性原理研究[J]. 中国有色金属学报, 2009, 19(8): 1517-1523. doi: 10.3321/j.issn:1004-0609.2009.08.026

    CrossRef Google Scholar

    CHEN J H, CHEN Y, ZENG X Q, et al. A first-principles study on the influence of iron impurities on the electronic structure and activation of sphalerite surface[J]. Chinese Journal of Nonferrous Metals, 2009, 19(8): 1517-1523. doi: 10.3321/j.issn:1004-0609.2009.08.026

    CrossRef Google Scholar

    [55] ZHANG L M, GAO J D, KHOSO S A, et al. Interaction mechanism of the adopted reagents in the flotation recovery of sphalerite and pyrite from a galena flotation tailing: first-principles calculations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126378. doi: 10.1016/j.colsurfa.2021.126378

    CrossRef Google Scholar

    [56] 龚明光. 泡沫浮选[M]. 北京: 冶金工业出版社, 2007: 250-256.

    Google Scholar

    GONG M G. Foam flotation[M]. Beijing: Metallurgical Industry Press, 2007: 250-256.

    Google Scholar

    [57] 尚衍波, 陈经华, 何发钰. 中国铅锌选矿技术新进展[J]. 世界有色金属, 2016(6): 11-18.

    Google Scholar

    SHANG Y B, CHEN J H, HE F Y. New progress of lead-zinc beneficiation technology in China[J]. World Nonferrous Metals, 2016(6): 11-18.

    Google Scholar

    [58] 戴晶平. 铅锌选矿技术[M]. 长沙: 中南大学出版社, 2010: 51-55.

    Google Scholar

    DAI J P. Lead-zinc beneficiation technology[M]. Changsha: Central South University Press, 2010: 51-55.

    Google Scholar

    [59] 邱廷省, 何元卿, 余文, 等. 硫化铅锌矿浮选分离技术的研究现状及进展[J]. 金属矿山, 2016(3): 1-9.

    Google Scholar

    QIU T S, HE Y Q, YU W, et al. Research status and progress of flotation separation technology of lead-zinc sulfide ore[J]. Metal Mines, 2016(3): 1-9.

    Google Scholar

    [60] 王立刚, 刘万峰, 李成必. 巴基斯坦杜达铅锌矿优先浮选工艺工业试验研究[J]. 中国矿业, 2017, 26(S2): 345-347.

    Google Scholar

    WANG L G, LIU W F, LI B C, et al. Commercial test on Pb-Zn selective flotation in Duddar lead zinc mine, Bakistan[J]. China Mining Magazine, 2017, 26(S2): 345-347.

    Google Scholar

    [61] 梁李晓, 陈建华, 温凯. 云南某硫化铅锌矿低碱条件下浮选分离试验[J]. 金属矿山, 2020(12): 119-124.

    Google Scholar

    LIANG L X, CHEN J H, WEN K. Flotation separation test under low alkali conditions of a lead-zinc sulfide mine in Yunnan[J]. Metal Mines, 2020(12): 119-124.

    Google Scholar

    [62] 陈京玉, 康维刚, 谢建平, 等. 内蒙古某深部高硫铅锌矿石浮选工艺试验研究[J]. 金属矿山, 2018(10): 80-85.

    Google Scholar

    CHEN J Y, KANG W G, XIE J P, et al. Experimental study on flotation process of a deep high-sulfur lead-zinc ore in Inner Mongolia[J]. Metal Mines, 2018(10): 80-85.

    Google Scholar

    [63] 敖顺福, 王春光. 澜沧老厂银铅锌多金属矿选矿工艺优化与生产实践[J]. 矿冶工程, 2016, 36(6): 57-60. doi: 10.3969/j.issn.0253-6099.2016.06.015

    CrossRef Google Scholar

    AO S F, WANG C G. Optimization and industrial practice for beneficiation flowsheet of Ag-Pb-Zn polymetallic ore from Laochang mine in Lancang[J]. Mining and Metallurgical Engineering, 2016, 36(6): 57-60. doi: 10.3969/j.issn.0253-6099.2016.06.015

    CrossRef Google Scholar

    [64] 郑伦, 张笃. 电位调控浮选在凡口铅锌矿的应用[J]. 中国矿山工程, 2005(2): 1-4+8. doi: 10.3969/j.issn.1672-609X.2005.02.002

    CrossRef Google Scholar

    ZHENG L, ZHANG D. Application of potential adjustment and control flotation in Fankou lead-zinc mine[J]. China Mine Engineering, 2005(2): 1-4+8. doi: 10.3969/j.issn.1672-609X.2005.02.002

    CrossRef Google Scholar

    [65] 夏青, 欧阳辉, 梁菁菁. 硫化铅锌矿浮选分离研究进展[J]. 矿冶, 2018, 27(2): 9-14. doi: 10.3969/j.issn.1005-7854.2018.02.003

    CrossRef Google Scholar

    XIA Q, OU Y H, LIANG J J. Research progress on flotation separation of lead-zinc sulfide ore[J]. Mining and Metallurgy, 2018, 27(2): 9-14. doi: 10.3969/j.issn.1005-7854.2018.02.003

    CrossRef Google Scholar

    [66] SRDJAN M B. Flotation of mixed lead zinc sulphide oxide and oxide lead and zinc ores[J]. 2010, 20(1): 67-86.

    Google Scholar

    [67] 史巾, 卜显忠, 翁存建, 等. 四川某硫化铅锌矿选矿工艺试验研究[J]. 矿业研究与开发, 2021, 41(1): 141-145.

    Google Scholar

    SHI J, BU X Z, WENG C J, et al. Research on beneficiation technology of a lead-zinc sulfide mine in Sichuan[J]. Mining Research and Development, 2021, 41(1): 141-145.

    Google Scholar

    [68] 敖顺福, 王春光, 胡红喜, 等. 某含银低品位铅锌矿石选矿试验研究[J]. 有色金属(选矿部分), 2019(4): 32-39.

    Google Scholar

    AO S F, WANG C G, HU H X, et al. Processing experimental study on a low-grade lead-zinc ore containing silver[J]. Nonferrous Metals (Mineral Processing Part), 2019(4): 32-39.

    Google Scholar

    [69] 贺翔. 宝山铅锌银多金属矿工艺流程改造与生产实践[J]. 湖南有色金属, 2015, 31(3): 21-25. doi: 10.3969/j.issn.1003-5540.2015.03.007

    CrossRef Google Scholar

    HE X. Transformation and production practice of Baoshan lead-zinc-silver polymetallic ore[J]. Hunan Nonferrous Metals, 2015, 31(3): 21-25. doi: 10.3969/j.issn.1003-5540.2015.03.007

    CrossRef Google Scholar

    [70] 王乃玲, 宋宁波, 卢冀伟. 甘肃某硫化铅锌矿无碱度浮选试验研究[J]. 金属矿山, 2020(2): 59-64.

    Google Scholar

    WANG N L, SONG N B, LU J W. Experimental study on non-alkalinity flotation of a lead-zinc sulfide mine in Gansu[J]. Metal Mines, 2020(2): 59-64.

    Google Scholar

    [71] MA X, HU Y, ZHONG H, et al. A novel surfactant S-benzoyl-N, N-diethyldithiocarbamate synthesis and its flotation performance to galena[J]. Applied Surface Science, 2016, 365: 342-351. doi: 10.1016/j.apsusc.2016.01.048

    CrossRef Google Scholar

    [72] WANG J G, JI Y H, CHENG S Y, et al. Selective flotation separation of galena from sphalerite via chelation collectors with different nitrogen functional groups[J]. Applied Surface Science, 2021, 568: 150956. doi: 10.1016/j.apsusc.2021.150956

    CrossRef Google Scholar

    [73] 杨延宙, 吴明海, 张慧婷, 等. 新型捕收剂Y2提高四川某铅锌硫化矿浮选指标的研究[J]. 矿产保护与利用, 2020, 40(3): 140-146.

    Google Scholar

    YANG Y Z, WU M H, ZHANG H T, et al. Research on improving the flotation index of a lead-zinc sulfide ore in Sichuan with new collector Y2[J]. Conservation and Utilization of Mineral, 2020, 40(3): 140-146.

    Google Scholar

    [74] NATARAJIAN R, NIRDOSH I. New collectors for sphalerite flotation[J]. International Journal of Mineral Processing, 2006, 79(3): 141-148. doi: 10.1016/j.minpro.2005.11.011

    CrossRef Google Scholar

    [75] 胡盘金, 郑永兴, 包凌云, 等. 硫化铅锌矿物浮选药剂应用研究进展[J]. 矿冶, 2021, 30(3): 123-128+144. doi: 10.3969/j.issn.1005-7854.2021.03.019

    CrossRef Google Scholar

    HU P J, ZHENG Y X, BAO L Y, et al. Research progress in the application of lead and zinc sulfide minerals flotation reagents[J]. Mining and Metallurgy, 2021, 30(3): 123-128+144. doi: 10.3969/j.issn.1005-7854.2021.03.019

    CrossRef Google Scholar

    [76] 李文华, 韩俊伟, 刘维, 等. 新疆某硫化铅矿石选矿试验研究[J]. 金属矿山, 2016(6): 65-68. doi: 10.3969/j.issn.1001-1250.2016.06.012

    CrossRef Google Scholar

    LI W H, HAN J W, LIU W, et al. Experimental study on beneficiation of a lead sulfide ore in Xinjiang[J]. Metal Mines, 2016(6): 65-68. doi: 10.3969/j.issn.1001-1250.2016.06.012

    CrossRef Google Scholar

    [77] 方振鹏, 胡岳华, 戴晶平, 等. 缅甸某铅锌硫化矿选矿工艺试验研究[J]. 国外金属矿选矿, 2004(1): 29-30+28.

    Google Scholar

    FANG Z P, HU Y H, DAI J P, et al. Research on beneficiation process test of a lead-zinc sulfide ore in Myanmar[J]. Foreign Metal Mineral Processing, 2004(1): 29-30+28.

    Google Scholar

    [78] 尧章伟, 方建军, 代宗, 等. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿冶, 2018, 27(4): 16-21.

    Google Scholar

    YAO Z W, FANG J J, DAI Z, et al. Reaction mechanism and research progress of sphalerite depressants[J]. Mining and Metallurgy, 2018, 27(4): 16-21.

    Google Scholar

    [79] YANG B Q, ZHU H Y, ZENG L Y, et al. An environmental-friendly sphalerite depressant (2-hydroxyphosphonoacetic acid) for the selective flotation separation of sphalerite from galena[J]. Journal of Molecular Liquids, 2021, 343: 117614.

    Google Scholar

    [80] TAN X, ZHU Y G, SUN C Y, et al. Adding cationic guar gum after collector: A novel investigation in flotation separation of galena from sphalerite[J]. Minerals Engineering, 2020, 157: 106542.

    Google Scholar

    [81] HUANG P, CAOM L, LIU Q. Selective depression of sphalerite by chitosan in differential Pb-Zn flotation[J]. International Journal of Mineral Processing, 2013, 122: 29-35.

    Google Scholar

    [82] GAO Z Y, JIANG Z Y, SUN W, et al. Typical roles of metal ions in mineral flotation: a review[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 2081-2101.

    Google Scholar

    [83] WANG H, WEN S M, HAN G, et al. Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate[J]. Minerals Engineering, 2020, 146: 106132.

    Google Scholar

    [84] DONG W C, LIU J, HAO J M, et al. Adsorption of DTC-CTS on sphalerite (110) and Cu-activated sphalerite (110) surfaces: A DFT study[J]. Applied Surface Science, 2021, 551: 149466.

    Google Scholar

    [85] 温凯, 陈建华. 云南某含金银低品位硫化铅锌矿浮选试验[J]. 金属矿山, 2019(4): 71-75.

    Google Scholar

    WEN K, CHEN J H. Flotation test of a low-grade lead-zinc sulfide ore containing gold and silver in Yunnan[J]. Metal Mines, 2019(4): 71-75.

    Google Scholar

    [86] TONG X, SONG S X, HE J, et al. Flotation of indium-beard marmatite from multi-metallic ore[J]. Rare Metals, 2008, 27(2): 107-111.

    Google Scholar

    [87] 谢贤, 童雄, 王成行, 等. 某难选高硫铅锌矿的选矿工艺试验研究[J]. 矿产保护与利用, 2010(1): 37-40.

    Google Scholar

    XIE X, TONG X, WANG C X, et al. Research on beneficiation technology of a refractory high-sulfur lead-zinc ore[J]. Conservation and Utilization of Mineral, 2010(1): 37-40.

    Google Scholar

    [88] 陈建华, 童雄, 甘恒, 等. 多金属硫化矿混合浮选高效活化剂试验研究[J]. 有色金属(选矿部分), 2018(3): 97-100.

    Google Scholar

    CHEN J H, TONG X, GAN H, et al. Experimental study on high-efficiency activator for mixed flotation of polymetallic sulfide ore[J]. Nonferrous Metals (Mineral Processing), 2018(3): 97-100.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(3168) PDF downloads(275) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint