Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

LI Yuhao, SHI Xianzhao, TAN Zeling, HUANG Jing, FENG Yao. Research Progress of Lead Oxide Flotation Technology[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 115-124. doi: 10.13779/j.cnki.issn1001-0076.2022.03.017
Citation: LI Yuhao, SHI Xianzhao, TAN Zeling, HUANG Jing, FENG Yao. Research Progress of Lead Oxide Flotation Technology[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 115-124. doi: 10.13779/j.cnki.issn1001-0076.2022.03.017

Research Progress of Lead Oxide Flotation Technology

More Information
  • The development and utilization of lead oxide ore has attracted wide attention due to the decreasing of lead sulfide resources. The difficulty of lead oxide ore flotation is its low floatability and complex composition, and sulfation can solve this problem by improving the floatability of lead oxide ore. In this paper, the ore properties of lead oxide ore and the development and application status of flotation reagents are introduced. Taking direct flotation method and sulfurization-xanthate method as the starting point, the research progress and current problems of lead oxide flotation technology at home and abroad in recent years are reviewed. The research direction of lead oxide flotation is prospected. The purpose is to provide some reference for efficient and clean flotation separation of lead oxide ore.

  • 加载中
  • [1] O'CONNOR D, HOU D, YE J, et al. Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications[J]. Environment International, 2018, 121(Pt1): 85-101.

    Google Scholar

    [2] 李新, 康欣宇, 林靖, 等. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545.

    Google Scholar

    LI X, KANG X Y, LIN J, et al. Lead resource flow and cycle efficiency in China[J]. Resource Science, 2021, 43(3): 535-545

    Google Scholar

    [3] 顾佳妮, 张新元, 韩九曦, 等. 全球铅矿资源形势及中国铅资源发展[J]. 中国矿业, 2017, 26(2): 16-20+44. doi: 10.3969/j.issn.1004-4051.2017.02.004

    CrossRef Google Scholar

    GU J N, ZHANG X Y, HAN J X. et al. Global lead resources situation and China's lead resources development[J]. China Mining, 2017, 26(2): 16-20+44. doi: 10.3969/j.issn.1004-4051.2017.02.004

    CrossRef Google Scholar

    [4] 刘晓, 张宇, 王楠, 等. 我国铅锌矿资源现状及其发展对策研究[J]. 中国矿业, 2015, 24(s1): 6-9.

    Google Scholar

    LIU X, ZHANG Y, WANG N, et al. Study on the current situation and development countermeasures of lead-zinc resources in China[J]. China Mining, 2015, 24(s1): 6-9.

    Google Scholar

    [5] YU. MIKHLIN, A. KUKLINSKIY, E. MIKHLINA, et al. Electrochemical behaviour of galena (PbS) in aqueous nitric acid and perchloric acid solutions[J]. Journal of Applied Electrochemistry, 2004, 34(1): 37-46. doi: 10.1023/B:JACH.0000005566.28289.c0

    CrossRef Google Scholar

    [6] 陈军, 卫亚儒, 胡聪, 等. 氧化铅锌矿选矿现状及最新进展[J]. 中国矿山工程, 2015, 44(2): 19-23. doi: 10.3969/j.issn.1672-609X.2015.02.006

    CrossRef Google Scholar

    CHEN J, WEI Y R, HU C, et al. Current situation and latest progress of beneficiation of lead zinc oxide ore[J]. China Mine Engineering, 2015, 44(2): 19-23. doi: 10.3969/j.issn.1672-609X.2015.02.006

    CrossRef Google Scholar

    [7] 兰志强, 蓝卓越, 张琦福. 氧化铅锌矿利用工艺技术研究进展[J]. 矿产综合利用, 2015(5): 8-12. doi: 10.3969/j.issn.1000-6532.2015.05.002

    CrossRef Google Scholar

    LAN Z Q, LAN Z Y, ZHANG Q F. Research progress on utilization technology of lead zinc oxide ore[J]. Comprehensive Utilization of Mineral Resources, 2015(5): 8-12. doi: 10.3969/j.issn.1000-6532.2015.05.002

    CrossRef Google Scholar

    [8] BOLAN, SHIV, et al. Gut microbes modulate bioaccessibility of lead in soil[J]. Chemosphere, 2021, 270: 128657. doi: 10.1016/j.chemosphere.2020.128657

    CrossRef Google Scholar

    [9] LEQUIEN, FLORENCE, et al. The corrosion mechanism initiation of a 75Sn-25Pb coating on a low-carbon steel sample in HCl environments[J]. Materials and Corrosion, 2021, 72(9): 1488-1505. doi: 10.1002/maco.202112336

    CrossRef Google Scholar

    [10] DE SEAUVE, THéA, et al. Continuous wave laser thermal restoration of oxidized lead-based pigments in mural paintings[J]. Applied Physics B, 2021, 127(12): 1-11.

    Google Scholar

    [11] 王福良, 孙传尧. 利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为[J]. 国外金属矿选矿, 2008(6): 25-27+31.

    Google Scholar

    WANG F L, SUN C Y. Molecular mechanics analysis of flotation behavior of inactive galena by xanthate collector[J]. Foreign Metal Ore Beneficiation, 2008(6): 25-27+31.

    Google Scholar

    [12] 王涵, 文书明, 李尧, 等. 氧化铅矿浮选研究现状[J]. 矿产保护与利用, 2018(1): 133-139.

    Google Scholar

    WANG H, WEN S M, LI Y, et al. Research status of flotation of lead oxide ore[J]. Conservation and Utilization of Mine Resources, 2018(1): 133-139.

    Google Scholar

    [13] 贾江平. 铅氧化物纳米线的性质及其相变研究[D]. 长沙: 湖南师范大学, 2018.

    Google Scholar

    JIA J P. Properties and their phase transition studies of lead-oxide nanowires[D]. Changsha: Hunan Normal University, 2018.

    Google Scholar

    [14] TIAN M, HU Y, SUN W. Study on the mechanism and application of a novel collector-complexes in cassiterite flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522: 635-641. doi: 10.1016/j.colsurfa.2017.02.051

    CrossRef Google Scholar

    [15] 陈军, 卫亚儒, 胡聪, 等. 氧化铅锌矿选矿现状及最新进展[J]. 中国矿山工程, 2015, 44(2): 19-23. doi: 10.3969/j.issn.1672-609X.2015.02.006

    CrossRef Google Scholar

    CHEN J, WEI Y, HU C, et al. Current status and latest progress of lead zinc oxide[J]. China Mining Engineering, 2015, 44(2): 19-23. doi: 10.3969/j.issn.1672-609X.2015.02.006

    CrossRef Google Scholar

    [16] LEQUIEN F, MOINE G, LEQUIEN A, et al. The corrosion mechanism initiation of a 75Sn-25Pb coating on a low-carbon steel sample in HCl environments[J]. Materials and Corrosion, 2021, 72(9): 1488-1505. doi: 10.1002/maco.202112336

    CrossRef Google Scholar

    [17] LIU C, ZHANG W, SONG S, et al. A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite[J]. Powder Technology, 2019, 344: 103-107. doi: 10.1016/j.powtec.2018.12.002

    CrossRef Google Scholar

    [18] MüTEVELLIOĜLU N A, YEKELER M. Beneficiation of oxidized lead-zinc ores by flotation using different chemicals and test conditions[J]. Journal of Mining Science, 2019, 55(2): 327-332. doi: 10.1134/S1062739119025623

    CrossRef Google Scholar

    [19] 宋凯伟, 李佳磊, 蔡锦鹏, 等. 典型氧化铜铅锌矿物浮选的表面硫化研究进展[J]. 化工进展, 2018, 37(9): 3618-3628.

    Google Scholar

    SONG K W, LI J L, CAI J P, et al. Research progress of surface vulcanization in flotation of typical copper oxide lead zinc minerals[J]. Progress in chemical industry, 2018, 37(9): 3618-3628.

    Google Scholar

    [20] 刘军. 氧化铅锌矿的浮选[J]. 矿业快报, 2006(10): 26-29.

    Google Scholar

    LIU J. Flotation of lead-zinc oxide ore[J]. Mining Express, 2006(10): 26-29.

    Google Scholar

    [21] 闫朋, 赵光洲, 蒲锋, 等. 青海玛温根矿区氧化铅银矿工艺矿物学特性及分析研究[J]. 岩石矿物学杂志, 2019, 38(3): 390-398. doi: 10.3969/j.issn.1000-6524.2019.03.008

    CrossRef Google Scholar

    YAN P, ZHAO G Z, PU F, et al. Technological mineralogical characteristics and analysis of lead silver oxide ore in mawengen mining area, Qinghai[J]. Journal of rock mineralogy, 2019, 38(3): 390-398. doi: 10.3969/j.issn.1000-6524.2019.03.008

    CrossRef Google Scholar

    [22] 谢丹丹. 四川会理难选氧化铅锌矿选矿试验研究[D]. 昆明: 昆明理工大学, 2018.

    Google Scholar

    XIE D D. Study on mineral processing of lead and zinc oxide mine in Sichuan Province[D]. Kunming: Kunming University of Science and Technology, 2018.

    Google Scholar

    [23] 孟宪毅, 李玲, 王志江. 富含褐铁矿类型的银铅氧化矿选矿工艺研究[J]. 有色金属(选矿部分), 1996(1): 6-8.

    Google Scholar

    MENG X Y, LI L, WANG Z J. Study on concentration process of silver lead oxide rich in lmonite[J]. Non-ferrous metals (beneficiated part), 1996(1): 6-8.

    Google Scholar

    [24] 孙瑞, 谢海云, 田小松, 等. 氧化铅矿的硫化浮选试验研究[J]. 矿冶, 2019, 28(4): 51-55+74.

    Google Scholar

    SUN R, XIE H Y, TIAN X S, et al. Experimental study on sulfide flotation of lead oxide ore[J]. Mining and metallurgy, 2019, 28(4): 51-55+74.

    Google Scholar

    [25] GRUNINGER H, LIU Z, BRAUCKMANN J O, et al. Hydroxyl defects and oxide vacancies within ringwoodite-toward understanding the defect chemistry of spinel-type oxides[J]. The Journal of Physical Chemistry C, 2020, 124(22): 12001-12009. doi: 10.1021/acs.jpcc.0c03016

    CrossRef Google Scholar

    [26] ELIZONDO-áLVAREZ M A, URIBE-SALAS A, BELLO-TEODORO S. Comparative study of the interaction mechanisms between galena, cerussite and anglesite with benzohydroxamate and octanohydroxamate in aqueous solution[J]. Minerals Engineering, 2022, 176: 107355. doi: 10.1016/j.mineng.2021.107355

    CrossRef Google Scholar

    [27] 高志勇. 三种含钙矿物晶体各向异性与浮选行为关系的研究基础[D]. 长沙: 中南大学, 2013.

    Google Scholar

    GAO Z Y. Research basis for the relationship between anisotropy and flotation behavior of three calcium-containing mineral crystals[D]. Changsha: Central South University, 2013.

    Google Scholar

    [28] FENG Q, WEN S, ZHAO W, et al. A novel method for improving cerussitesulfidization[J]. International Journal of Minerals Metallurgy & Materials, 2016, 23(6): 609-617.

    Google Scholar

    [29] 丰奇成. 白铅矿氯离子强化硫化浮选试验及机理研究[D]. 昆明: 昆明理工大学, 2017.

    Google Scholar

    FENG Q C. Test and mechanism study of chloride ion in white lead ore[D]. Kunming: Kunming University of Science and Technology, 2017.

    Google Scholar

    [30] 梁冬云, 张志雄, 许志华. 白铅矿、菱锌矿晶体化学性质与硫化行为[J]. 广东有色金属学报, 1992(2): 83-88.

    Google Scholar

    LIANG D Y, ZHANG Z X, XU Z H. Chemical properties and vulcanation behavior of white lead ore and diamond zinc ore crystals[J]. Guangdong Journal of Nonferrous Metals, 1992(2): 83-88.

    Google Scholar

    [31] 张一兵. 铁铅锌硫化矿物和氧化矿物的电子结构差异及表面吸附性能研究[D]. 南宁: 广西大学, 2018.

    Google Scholar

    ZHANG Y B. Study on the electronic structure differences and surface adsorption properties of iron-lead-zinc sulfide minerals and oxide minerals[D]. Nanning: Guangxi University, 2018.

    Google Scholar

    [32] 卜显忠, 陈瑶. 我国氧化铅锌矿石选矿技术研究进展[J]. 金属矿山, 2019(7): 118-123.

    Google Scholar

    BU X Z, CHEN Y. Research progress on beneficiation technology of lead-zinc oxide ores in China[J]. Metal mines, 2019(7): 118-123.

    Google Scholar

    [33] 王仁东, 李振典, 杨小峰. 云南某氧化铅矿的浮选试验研究[J]. 矿产保护与利用, 2009(2): 30-32. doi: 10.3969/j.issn.1001-0076.2009.02.008

    CrossRef Google Scholar

    WANG R D, LI Z D, YANG X F. Experimental study on flotation of a lead oxide ore in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2009(2): 30-32. doi: 10.3969/j.issn.1001-0076.2009.02.008

    CrossRef Google Scholar

    [34] 谭欣, 李长根. 国内外氧化铅锌矿浮选研究进展(Ⅰ)[J]. 国外金属矿选矿, 2000(3): 7-14.

    Google Scholar

    TAN X, LI C G. Research progress of lead-zinc oxide flotation at home and abroad (I)[J]. Foreign metal ore dressing, 2000(3): 7-14.

    Google Scholar

    [35] 严小陵. 仲辛基黄药在氧化铅锌矿石浮选中的应用[J]. 云南冶金, 1976(5): 22-29.

    Google Scholar

    YAN X L. Application of zhongoctyl xanthate in flotation of lead-zinc oxide ore[J]. Yunnan metallurgy, 1976(5): 22-29

    Google Scholar

    [36] FILIPPOV L O, SEVEROV V V, FILIPPOVA I V. An overview of the beneficiation of iron ores via reverse cationic flotation[J]. International Journal of Mineral Processing, 2014, 127: 62-69. doi: 10.1016/j.minpro.2014.01.002

    CrossRef Google Scholar

    [37] 有色金属选矿情报: 选矿药剂专集[M]. 北京: 冶金工业部有色金属情报网, 1981.

    Google Scholar

    Nonferrous metal beneficiation information: special collection of beneficiation reagents[M]. Beijing: nonferrous metals information network of the Ministry of metallurgical industry, 1981.

    Google Scholar

    [38] 吴文丽. 氧化铅锌矿浮选药剂的研究现状[J]. 金属矿山, 2010(9): 63-67+70.

    Google Scholar

    WU W L. Research status of flotation reagent for lead zinc oxide ore[J]. Metal mine, 2010(9): 63-67+70

    Google Scholar

    [39] 曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1590-1592.

    Google Scholar

    CAO F, SUN C Y, WANG H J, et al. Effect of hydrocarbon structure on flotation performance of xanthate collector[J]. Journal of Beijing University of science and technology, 2014, 36(12): 1590-1592.

    Google Scholar

    [40] 沈同喜. 氧化铅矿硫化浮选强化技术研究[D]. 赣州: 江西理工大学, 2013.

    Google Scholar

    SHEN T X. Study on strengthening technology of sulfide flotation of lead oxide ore[D]. Ganzhou: Jiangxi University of technology, 2013.

    Google Scholar

    [41] 刘凤霞. 氧化铅浮选黄药分子结构与性能研究[D]. 南宁: 广西大学, 2007.

    Google Scholar

    LIU F X. Study on molecular structure and properties of xanthate in lead oxide flotation[D]. Nanning: Guangxi University, 2007.

    Google Scholar

    [42] 魏宗武, 陈晔. 黄药体系中白铅矿的浮选行为研究[J]. 江西有色金属, 2008, 22(1): 20-21.

    Google Scholar

    WEI Z W, CHEN Y. Study on flotation behavior of galena in xanthate system[J]. Jiangxi Nonferrous Metals, 2008, 22(1): 20-21.

    Google Scholar

    [43] ABRAMOV, LI C G, CUI H S. Theoretical basis and regularity of action mechanism of cationic collector in mineral flotation[J]. Foreign Metal Ore Dressing, 2007, 44(8): 5.

    Google Scholar

    [44] 张万忠. 白铅矿和菱锌矿的辅助捕收剂研究[D]. 沈阳, 东北大学, 2018, 9.

    Google Scholar

    ZHANG W Z. Study on auxiliary collectors of galena and smithsonite[D]. Shenyang: Northeast University, 2018, 9.

    Google Scholar

    [45] 陈锦全, 周德炎, 魏宗武, 等. 高铁泥化氧化铅锌矿的浮选试验研究[J]. 矿业研究与开发, 2007(5): 50-51. doi: 10.3969/j.issn.1005-2763.2007.05.019

    CrossRef Google Scholar

    CHEN J Q, ZHOU D Y, Wei Z W, et al. Flotation test of high-speed lead zinc oxide ore[J]. Mining Research and Development, 2007(5): 50-51. doi: 10.3969/j.issn.1005-2763.2007.05.019

    CrossRef Google Scholar

    [46] 孙广周, 王德英, 罗兴, 等. 新型组合捕收剂浮选氧化铅矿试验研究[J]. 矿产保护与利用, 2012(1): 26-29. doi: 10.3969/j.issn.1001-0076.2012.01.007

    CrossRef Google Scholar

    SUN G Z, WANG D Y, LUO X, et al. Experimental study on flotation of lead oxide ore with a new combined collector[J]. Conservation and Utilization of Mineral Resources, 2012(1): 26-29. doi: 10.3969/j.issn.1001-0076.2012.01.007

    CrossRef Google Scholar

    [47] 谭欣, 李长根. 以CF为捕收剂氧化铅锌矿浮选新方法[J]. 有色金属, 2002, 54(4): 86-94.

    Google Scholar

    TAN X, LI C G. A new flotation method of oxidized lead zinc ore with CF as collector[J]. Nonferrous Metals, 2002, 54(4): 86-94.

    Google Scholar

    [48] 朱永楷, 孙传尧, 吴卫国. 一种新型捕收剂对白铅矿和方解石与石英的捕收性能[J]. 有色金属, 2006, 58(3): 77-80. doi: 10.3969/j.issn.2095-1744.2006.03.021

    CrossRef Google Scholar

    ZHU Y K, SUN C Y, WU W G. Collection performance of a new collector for galena, calcite and quartz[J]. Nonferrous Metals, 2006, 58(3): 77-80. doi: 10.3969/j.issn.2095-1744.2006.03.021

    CrossRef Google Scholar

    [49] 王祖旭. 用新型螯合捕收剂分选云南某氧化铅锌矿石[J]. 金属矿山, 2014(7): 89-93.

    Google Scholar

    WANG Z X. Separation of a lead-zinc oxide ore in Yunnan with a new chelating collector[J]. Metal Mine, 2014(7): 89-93.

    Google Scholar

    [50] 王桂明, 王力生. 两性捕收剂AE-12及水解聚丙烯腈浮选氧化铅锌矿石[J]. 有色金属(选矿部分), 1983(5): 40-45.

    Google Scholar

    WANG G M, WANG L S. Flotation of oxidized lead-zinc ore with amphoteric collector ae-12 and hydrolyzed polyacrylonitrile[J]. Nonferrous Metals (mineral processing), 1983(5): 40-45.

    Google Scholar

    [51] 张心平. 氧化铅锌矿石浮选新药剂的应用研究[J]. 矿冶, 1996(3): 40-45.

    Google Scholar

    ZHANG X P. Application of new flotation reagent for lead zinc oxide ore[J]. Mining and Metallurgy, 1996(3): 40-45.

    Google Scholar

    [52] 张祥峰, 孙伟, 刘润清, 等. 西藏某难选氧化铅矿浮选试验研究[J]. 矿冶工程, 2015, 35(5): 35-38. doi: 10.3969/j.issn.0253-6099.2015.05.010

    CrossRef Google Scholar

    ZHANG X F, SUN W, LIU R Q, et al. Study on flotation test of a difficult lead oxide mine in Tibet[J]. Mining and Metallurgy Engineering, 2015, 35(5): 35-38. doi: 10.3969/j.issn.0253-6099.2015.05.010

    CrossRef Google Scholar

    [53] 王化军, 吴砚红, 张强. 锡铁山氧化铅锌矿选矿工艺研究[J]. 有色金属, 2002(6): 4-6.

    Google Scholar

    WANG H J, WU Y H, ZHANG Q. Study on Beneficiation Technology of Xitieshan lead zinc oxide ore[J]. Nonferrous Metals, 2002(6): 4-6.

    Google Scholar

    [54] 张祥峰, 孙伟. 阴阳离子混合捕收剂对异极矿的浮选作用及机理[J]. 中国有色金属学报, 2014(2): 499-505.

    Google Scholar

    ZHANG X F, SUN W. Flotation action and mechanism of mixed trap on heterogeneous ore[J]. Chinese Journal of Nonferrous Metals, 2014(2): 499-505.

    Google Scholar

    [55] 刘凤霞, 陈建华, 魏宗武. 氧化铅矿浮选研究进展[J]. 矿产保护与利用, 2008(1): 48-55. doi: 10.3969/j.issn.1001-0076.2008.01.013

    CrossRef Google Scholar

    LIU F X, CHEN J H, WEI Z W. Progress in flotation of lead oxide ore[J]. Conservation and Utilization of Mineral Resources, 2008(1): 48-55. doi: 10.3969/j.issn.1001-0076.2008.01.013

    CrossRef Google Scholar

    [56] 叶雪均. 难选氧化铅锌矿石选矿试验研究[J]. 有色金属(选矿部分), 2001(2): 1-5. doi: 10.3969/j.issn.1671-9492.2001.02.001

    CrossRef Google Scholar

    Ye X J. Study on beneficiprocessing of lead zinc oxide ore[J]. Non-ferrous Metals (concentrator part), 2001(2): 1-5. doi: 10.3969/j.issn.1671-9492.2001.02.001

    CrossRef Google Scholar

    [57] 陈建华, 龙秋容, 金锐, 等. 云南兰坪氧化铅矿强化分散浮选试验研究[J]. 金属矿山, 2008(9): 51-53. doi: 10.3321/j.issn:1001-1250.2008.09.015

    CrossRef Google Scholar

    CHEN J H, LONG Q R, JIN R, et al. Experimental study on enhanced dispersion flotation of Lanping lead oxide ore in Yunnan[J]. Metal Mines, 2008(9): 51-53. doi: 10.3321/j.issn:1001-1250.2008.09.015

    CrossRef Google Scholar

    [58] 黄宝光. 铅精矿降砷试验与生产实践[J]. 广东有色金属, 1997(2): 17-19.

    Google Scholar

    HUANG B G. Arsenic reduction test and production practice of lead concentrate[J]. Guangdong Nonferrous Metals, 1997(2): 17-19.

    Google Scholar

    [59] KUMAR D, JAIN V, RAI B. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina-rich iron ore slimes: a density functional theory and experimental study[J]. Minerals Engineering, 2018, 121: 47-54. doi: 10.1016/j.mineng.2018.02.020

    CrossRef Google Scholar

    [60] LIU J, ZENG Y, EJTEMAEI M, et al. DFT simulation of S-species interaction with smithsonite (001) surface: Effect of water molecule adsorption position[J]. Results in Physics, 2019, 15: 102575. doi: 10.1016/j.rinp.2019.102575

    CrossRef Google Scholar

    [61] WANG J, BAI J, YIN W, et al. Flotation separation of scheelite from calcite using carboxyl methyl cellulose as depressant[J]. Minerals Engineering, 2018, 127: 329-333. doi: 10.1016/j.mineng.2018.03.047

    CrossRef Google Scholar

    [62] 罗春华, 张秀品, 苏晓晖. 抑制剂CMC在青海某硫化铜镍矿浮选中的应用研究[J]. 有色金属工程, 2017, 7(1): 55-59. doi: 10.3969/j.issn.2095-1744.2017.01.012

    CrossRef Google Scholar

    LUO C H, ZHANG X P, SU X H. Application of inhibitor CMC in flotation of a copper nickel sulfide ore in Qinghai[J]. Nonferrous Metal Engineering, 2017, 7(1): 55-59. doi: 10.3969/j.issn.2095-1744.2017.01.012

    CrossRef Google Scholar

    [63] KIM Y, ABDILLA B, YUAN K, et al. Replacement of Calcium Carbonate Polymorphs by Cerussite[J]. ACS Earth and Space Chemistry, 2021, 5(9): 2433-2441. doi: 10.1021/acsearthspacechem.1c00177

    CrossRef Google Scholar

    [64] 柳彦昊, 田小松, 谢海云, 等. 低品位氧化铅矿硫化浮选的影响因素研究[J]. 矿物学报, 2021, 41(1): 78-84.

    Google Scholar

    LIU Y H, TIAN X S, XIE H Y, et al. Study on Influencing Factors of sulfide flotation of low-grade lead oxide ore[J]. Acta Mineralogica Sinica, 2021, 41(1): 78-84.

    Google Scholar

    [65] GAO Z Y, BAI D, SUN W, et al. Selective flotation of scheelite from calcite and fluorite using a collector mixture[J]. Minerals Engineering, 2015, 72: 23-26. doi: 10.1016/j.mineng.2014.12.025

    CrossRef Google Scholar

    [66] 胡彬. 云南某氧化铅矿选矿工艺研究[J]. 云南冶金, 2019, 48(2): 10-13. doi: 10.3969/j.issn.1006-0308.2019.02.003

    CrossRef Google Scholar

    HU B. Research on mineral processing Technology of a Lead oxide Mine in Yunnan Province[J]. Yunnan Metallurgy, 2019, 48(2): 10-13. doi: 10.3969/j.issn.1006-0308.2019.02.003

    CrossRef Google Scholar

    [67] 饶强坚. 某氧化铅锌矿浮选试验[J]. 现代矿业, 2017, 33(11): 117-120. doi: 10.3969/j.issn.1674-6082.2017.11.032

    CrossRef Google Scholar

    RAO Q J. Flotation test of a lead-zinc oxide mine[J]. Modern Mining Industry, 2017, 33(11): 117-120. doi: 10.3969/j.issn.1674-6082.2017.11.032

    CrossRef Google Scholar

    [68] ZHOU R, CHANDER S. Kinetics of sutfidization of malachite in hydrosulfide and tetrasulfidesolutions[J]. International Iournal of Mineral Processing, 1993, 37: 257-272. doi: 10.1016/0301-7516(93)90030-E

    CrossRef Google Scholar

    [69] 陈经华, 孙传尧. 白铅矿浮选体系中硫化钠作用机理研究[J]. 国外金属矿选, 2006(2): 19-20.

    Google Scholar

    CHEN J H, SUN C Y. Study on the action mechanism of sodium sulfide in galena flotation system[J]. Foreign Metal Ore Dressing, 2006(2): 19-20.

    Google Scholar

    [70] 罗进. 氧化铅矿石硫化浮选工艺研究[J]. 有色金属(选矿部分). 2009(5): 8-10.

    Google Scholar

    LUO J. Study on sulfide flotation process of lead oxide ore[J]. Nonferrous Metals (beneficiation). 2009(5): 8-10.

    Google Scholar

    [71] 施道民, 杨敖. 氧化铅锌矿的浮选[M]. 昆明: 云南科技出版社, 1996.

    Google Scholar

    SHI D M, YANG A. Flotation of lead zinc oxide ore[M]. Kunming: Yunnan Science and Technology Press, 1996.

    Google Scholar

    [72] 朱国庆郭顺磊, 常慕远. 某难选氧化铅锌矿选矿试验研究[J]. 矿冶工程, 2014, 34(s1): 163-165.

    Google Scholar

    ZHU G Q, GUO S L, CHANG M Y. Experimental study on Beneficiation of a refractory oxidized lead zinc ore[J]. Mining and Metallurgy Engineering, 2014, 34(s1): 163-165.

    Google Scholar

    [73] 毛益林, 陈晓青, 杨进忠, 等. 某复杂难选氧化铅锌矿选矿试验研究[J]. 矿产综合利用, 2011(1): 6-10.

    Google Scholar

    MAO Y l, CHEN X Q, YANG J Z, et al. Experimental study on mineral ation of a complex difficult lead zinc oxide mine[J]. Comprehensive utilization of minerals, 2011(1): 6-10.

    Google Scholar

    [74] MARABINI A M, BARLIARO M, PASSARIELLO B. Flotation of cerussite with a synthetic chelating collector[J]. International Journal of Mineral Processing, 1989, 25(1/2): 29-40.

    Google Scholar

    [75] 王福良. 铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D]. 沈阳: 东北大学, 2008.

    Google Scholar

    WANG F L. Basic theoretical study on flotation of copper, lead, zinc and iron main sulfide oxide minerals[D]. Shenyang: Northeast University, 2008.

    Google Scholar

    [76] A. M. marabini, LUO S T, ZHOU L M. Flotation of lead zinc oxide ore[J]. Foreign Metal Ore Beneficiation, 1990(7): 1-12.

    Google Scholar

    [77] 刘思言, 刘殿文, 李佳磊, 等. 白铅矿浮选的表面硫化研究进展[J]. 有色金属(选矿部分), 2019(2): 97-102.

    Google Scholar

    LIU S Y, LIU D W, LI J L, et al. Research Progress on surface vulcanization of galena flotation[J] Nonferrous Metals (beneficiation), 2019(2): 97-102.

    Google Scholar

    [78] 樊丽. 硫化技术在重金属固废综合利用中的具体运用[J]. 中国资源综合利用, 2021, 39(9): 90-92.

    Google Scholar

    FAN L Specific application of vulcanization technology in comprehensive utilization of heavy metal solid waste[J]. Comprehensive Utilization of Resources in China, 2021, 39(9): 90-92.

    Google Scholar

    [79] KIM Y, ABDILLA B, YUAN K, et al. Replacement of Calcium Carbonate Polymorphs by Cerussite[J]. ACS Earth and Space Chemistry, 2021, 5(9): 2433-2441.

    Google Scholar

    [80] 陈经华, 张方齐. 白铅矿硫化浮选体系的电化学性质研究[J]. 矿冶工程, 2017, 37(4): 38-40.

    Google Scholar

    CHEN J H, ZHANG F Q. Study on electrochemical properties of sulfide flotation system of white lead ore[J]. Mining and Metallurgy Engineering, 2017, 37(4): 38-40.

    Google Scholar

    [81] JIMOH O A, ARIFFIN K S, HUSSIN H B, et al. Synthesis of precipitated calcium carbonate: a review[J]. Carbonates and Evaporites, 2018, 33(2): 331-346.

    Google Scholar

    [82] 刘殿文, 李佳磊, 刘瑞增, 等. 典型氧化铜铅锌矿物浮选的硫化及其强化研究新进展[J]. 中国科学基金, 2021, 35(6): 885-894.

    Google Scholar

    LIU D W, LI J L, LIU R Z, et al. New research progress on sulfide and strengthening of flotation of typical copper oxide lead-zinc minerals[J]. Science Foundation of China, 2021, 35(6): 885-894.

    Google Scholar

    [83] 陈建华, 曾小钦, 陈晔, 等. 含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J]. 中国有色金属学报, 2010, 20(4): 765-771.

    Google Scholar

    CHEN J H, ZENG X Q, CHEN Y, et al. First principles calculation of electronic structure of sphalerite with vacancy and impurity defects[J]. Chinese Journal of Nonferrous Metals, 2010, 20(4): 765-771.

    Google Scholar

    [84] BRUCKARD W J, SPARROW G J, WOODCOCK J T. A review of the effects of the grinding environment on the flotation of copper sulphides[J]. International Journal of Mineral Processing, 2011, 100(1/2): 1-13.

    Google Scholar

    [85] TIKHOMIROV S G, PYATAKOV Y V, KARMANOVA O V, et al. A technique of calculating the kinetics of the process of nonisothermal vulcanization of large articles[J]. Chemical and Petroleum Engineering, 2018, 53(9): 647-652.

    Google Scholar

    [86] EGHBARIEH N, HANANIA N, ZAMIR A, et al. Stereoselective diels-alder reactions of gem-diborylalkenes: toward the synthesis of gem-diboron-based polymers[J]. Journal of the American Chemical Society, 2021, 143(16): 6211-6220.

    Google Scholar

    [87] GARRETT G E, PRATT D A, PARENT J S. Hydrogen atom abstraction from polyolefins: Experimental and computational studies of model systems[J]. Macromolecules, 2020, 53(8): 2793-2800.

    Google Scholar

    [88] GHOSH J, GHORAI S, JALAN A K, et al. Manifestation of accelerator type and vulcanization system on the properties of silica-reinforced SBR/devulcanize SBR blend vulcanizates[J]. Advances in Polymer Technology, 2018, 37(7): 2636-2650.

    Google Scholar

    [89] IKEDA Y, SAKAKI Y, YASUDA Y, et al. Roles of dinuclear bridging bidentate zinc/stearate complexes in sulfur cross-linking of isoprene rubber[J]. Organometallics, 2019, 38(11): 2363-2380.

    Google Scholar

    [90] CHEN H, PENG Y, TANG L, et al. Synergetic enhancement of Pb2+ and Zn2+ adsorption onto size-selective sludge biochar portions in multiple ion solution systems. ACS omega, 2021.

    Google Scholar

    [91] 魏宗武, 陈建华, 穆枭. 白铅矿在黄药体系中的浮选行为研究[J]. 湖南有色金属, 2007(1): 7-8+34.

    Google Scholar

    WEI Z W, CHEN J H, MU X. Study on flotation behavior of galena in xanthate system[J]. Hunan Nonferrous Metals, 2007(1): 7-8+34.

    Google Scholar

    [92] 赵文迪, 章晓林, 王其宏, 等. 四川绵阳某氧化铅锌矿浮选工艺研究[J]. 矿冶工程, 2018, 38(4): 45-49.

    Google Scholar

    ZHAO W D, ZHANG X L, WANG Q H, et al. Study on flotation process of a lead zinc oxide ore in Mianyang, Sichuan[J]. Mining and Metallurgy Engineering, 2018, 38(4): 45-49.

    Google Scholar

    [93] CAO Z, CHEN X M, PENG Y J. The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation[J]. Minerals Engineering, 2018, 119: 93-98.

    Google Scholar

    [94] MA X, XIA L Y, WANG S, et al. Structural modification of xanthate collectors to enhance the flotation selectivity of chalcopyrite[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6307-6316.

    Google Scholar

    [95] GE B L, PANG J, ZHENG Y X, et al. Sulfidation mechanism of cerussite in the presence of sulpHur at high temperatures[J]. Journal of Central South University, 2020, 27(11): 1516-1524

    Google Scholar

    [96] KOH P T L, HAO F P, SMITH L K, et al. The effect of particle shape and hydrophobicity in flotation[J]. International Journal of Mineral Processing, 2009, 93(2): 128-134.

    Google Scholar

    [97] 曾鹏, 谢海云, 晋艳玲, 等. 典型铜铅锌氧化矿的强化硫化浮选研究进展[J]. 矿冶, 2022, 31(2): 22-28.

    Google Scholar

    ZENG P, XIE H Y, JIN Y L, et al Research progress on enhanced sulfide flotation of typical copper lead zinc oxide ores[J] Mining and Metallurgy, 2022, 31(2): 22-28.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3289) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint