Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 2
Article Contents

YIN Wanzhong, SUN Haoran. Mechanism of Chelating Depressant BAPTA in Flotation Separation of Magnesite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2022.02.013
Citation: YIN Wanzhong, SUN Haoran. Mechanism of Chelating Depressant BAPTA in Flotation Separation of Magnesite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2022.02.013

Mechanism of Chelating Depressant BAPTA in Flotation Separation of Magnesite and Calcite

More Information
  • It is difficult to achieve the effective separation of magnesite from calcite because of their similar chemical and crystal properties. As a Ca selective chelator, BAPTA was used to improve the flotation separation of magnesite and calcite. The flotation test results showed that BAPTA could selectively inhibit the upward flotation of calcite in the sodium oleate system, and the flotation recovery difference between magnesite (recovery: 91.06%) and calcite (recovery: 7.37%) was large at pH 11.0, BAPTA dosage of 30 mg/L and sodium oleate dosage of 100 mg/L, which revealed that the flotation separation of magnesite and calcite could be realized. The selective depression mechanism of BAPTA was studied by Zeta potential, FTIR and XPS. The results indicated that BAPTA could selectively react with Ca on the surface of calcite, adsorb and cover the surface of calcite, prevent the adsorption of sodium oleate onto calcite surface, and eliminate the negative shift of zero electric point caused by sodium oleate on calcite. However, BAPTA had a little influence on Mg on the surface of magnesite, so it has a little effect on the adsorption of sodium oleate on magnesite.

  • 加载中
  • [1] HU Y, CHEN P, SUN W. Study on quantitative structure-activity relationship of quaternary ammonium salt collectors for bauxite reverse flotation [J]. Minerals Engineering, 2012, 26: 24-33. doi: 10.1016/j.mineng.2011.10.007

    CrossRef Google Scholar

    [2] 姚金. 含镁矿物浮选体系中矿物的交互影响研究[D]. 沈阳: 东北大学, 2014.

    Google Scholar

    YAO J. Research on the reciprocal influences among magnesium-containing ores in flotation[D]. Shenyang: Northeastern University, 2014.

    Google Scholar

    [3] 李虎龙. 研究菱镁矿矿床地质特征及其应用[J]. 世界有色金属, 2019(5): 284-286. doi: 10.3969/j.issn.1002-5065.2019.05.175

    CrossRef Google Scholar

    LI H L. Study on geological characteristics of magnesite deposit and its application[J]. World Nonferrous Metals, 2019(5): 284-286. doi: 10.3969/j.issn.1002-5065.2019.05.175

    CrossRef Google Scholar

    [4] 邓志杰. 世界镁的生产及发展动态[J]. 中国金属通报, 2000(21): 9-10.

    Google Scholar

    DENG Z J. Production and development of magnesium in the world[J]. China Metal Bulletin, 2019(21): 9-10.

    Google Scholar

    [5] YUN Z, GUO Z. A technology of preparing honeycomb-like structure MgO from low grade magnesite [J]. International Journal of Mineral Processing, 2014, 126: 35-40. doi: 10.1016/j.minpro.2013.11.006

    CrossRef Google Scholar

    [6] KOZHEVNIKOV E, KROPANEV S, BARAANOVSKII N. Beneficiation of dolomites [J]. Raw Material, 1973(3): 19-21.

    Google Scholar

    [7] HAN J, FU D, CUO J, et al. Volatilization and condensation behavior of magnesium vapor during magnesium production via a silicothermic process with magnesite [J]. Vacuum, 2021, 189: 110227. doi: 10.1016/j.vacuum.2021.110227

    CrossRef Google Scholar

    [8] ZHANG Z, MAO J. Effect of sodium oleate on flotation of magnesite[J]. Journal of Wuhan University of Technology-Materials Science, 1992(4): 60-70.

    Google Scholar

    [9] GENCE N. Wetting behavior of magnesite and dolomite surfaces[J]. Applied Surface Science, 2006, 252: 3744-3750. doi: 10.1016/j.apsusc.2005.05.053

    CrossRef Google Scholar

    [10] GENCE N, OZBAY N. pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions[J]. Applied Surface Science, 2006, 252: 8057-8061. doi: 10.1016/j.apsusc.2005.10.015

    CrossRef Google Scholar

    [11] TANG Y, YIN W, KELEBEK S. Selective flotation of magnesite from calcite using potassium cetyl phosphate as a collector in the presence of sodium silicate[J]. Minerals Engineering, 2020, 146: 106154. doi: 10.1016/j.mineng.2019.106154

    CrossRef Google Scholar

    [12] 王金良, 杨秀花. 菱镁矿除钙可选性研究[J]. 中国非金属矿工业导刊, 2010(04): 28-31.

    Google Scholar

    WANG J L, YANG X H. Study on separability of dolomite from magnesite ores[J]. China Non-metallic Mining Industry Herald, 2010(4): 28-31.

    Google Scholar

    [13] YANG B, ZHU Z, SUN H, et al. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant[J]. Minerals Engineering, 2020, 156: 106492. doi: 10.1016/j.mineng.2020.106492

    CrossRef Google Scholar

    [14] ZHU Z, WANG D, YANG B, et al. Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions[J]. Minerals Engineering, 2020, 151: 106340. doi: 10.1016/j.mineng.2020.106340

    CrossRef Google Scholar

    [15] JOHN B, EMMA R. Calcium in biological systems[J]. Advances in Inorganic Chemistry, 2009, 61: 251-366.

    Google Scholar

    [16] KOIDE Y, YAMADA K. Selective flotation of metal ions by using chelating surfactants[J]. Journal of Japan Oil Chemists' Society, 1990, 39: 736-743. doi: 10.5650/jos1956.39.10_736

    CrossRef Google Scholar

    [17] LIU C, ZHANG W, SONG S, et al. Flotation separation of smithsonite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as a depressant[J]. Powder Technology, 2019, 352: 11-15. doi: 10.1016/j.powtec.2019.04.036

    CrossRef Google Scholar

    [18] YIN W, YANG B, FU Y, et al. Effect of calcium hypochlorite on flotation separation of covellite and pyrite[J]. Powder Technology, 2019, 343: 578-585. doi: 10.1016/j.powtec.2018.11.048

    CrossRef Google Scholar

    [19] SANTANA A, PERES A. Reverse magnesite flotation[J]. Minerals Engineering 2001, 14: 107-111. doi: 10.1016/S0892-6875(00)00164-3

    CrossRef Google Scholar

    [20] SUN R, LIU D, LI Y, et al. Influence of lead ion pretreatment surface modification on reverse flotation separation of fluorite and calcite[J]. Minerals Engineering, 2021, 171: 107077. doi: 10.1016/j.mineng.2021.107077

    CrossRef Google Scholar

    [21] ANFRUNS J, KITCHEENER J. Rate of capture of small particles in flotation[J]. Transactions of the Institution of Mining and Metallurgy C: Mineral Processing and Extractive Metallurgy, 1977, 86: 9-15.

    Google Scholar

    [22] ZHOU Z, XU Z, FINCH J, et al. Role of hydrodynamic cavitation in fine particle flotation[J]. International Journal of Mineral Processing, 1997, 51: 139-149. doi: 10.1016/S0301-7516(97)00026-4

    CrossRef Google Scholar

    [23] BAER D, MARMORSTEIN A, WILLIFORD R, et al. Comparison Spectra for Calcite by XPS[J]. Surface Science Spectra, 1992(1): 80-86.

    Google Scholar

    [24] LIN B, WANG R, LIN J, et al. Effect of chlorine on the chemisorptive properties and ammonia synthesis activity of alumina-supported catalysts[J]. Catalysis Letters, 2011, 141: 1557-1568. doi: 10.1007/s10562-011-0658-3

    CrossRef Google Scholar

    [25] SIMON M, HARRISON D, BERS M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1987, 925(2): 133-143. doi: 10.1016/0304-4165(87)90102-4

    CrossRef Google Scholar

    [26] SUN H, YIN W, YAO J. Study of selective enhancement of surface hydrophobicity on magnesite and quartz by N, N-Dimethyloctadecylamine: Separation test, adsorption mechanism, and adsorption model[J]. Applied Surface Science, 2022, 152482.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1664) PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint