Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 2
Article Contents

CHEN Xudong, LIU Wengang, PENG Xiangyu, SUN Wenhan. Effect and Mechanism of Depressant Amino Trimethylene Phosphonic Acid on Flotation Separation of Magnesite and Dolomite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 91-99. doi: 10.13779/j.cnki.issn1001-0076.2022.02.012
Citation: CHEN Xudong, LIU Wengang, PENG Xiangyu, SUN Wenhan. Effect and Mechanism of Depressant Amino Trimethylene Phosphonic Acid on Flotation Separation of Magnesite and Dolomite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 91-99. doi: 10.13779/j.cnki.issn1001-0076.2022.02.012

Effect and Mechanism of Depressant Amino Trimethylene Phosphonic Acid on Flotation Separation of Magnesite and Dolomite

More Information
  • The highly effective depressant of dolomite from magnesite has been the focus in the field of mineral processing. Using sodium oleate (NaOL) as collector and amino trimethylene phosphonic acid (ATMP) as the depressant, the effects of these reagents on the flotation behavior of magnesite and dolomite were investigated through single and artificial mixed ore flotation tests. Furthermore, the mechanism of ATMP on the surfaces of both minerals was revealed using zeta potential, contact angle measurements, FTIR and XPS. Form the artificial mixed ore with magnesite and dolomite in the mass ratio of 4 : 1, the flotation indexes with MgO grade of 43.98%, CaO grade of 3.30%, recovery of 91.18% and separation efficiency of 91.18% could be obtained at approximately pH 10 with a reagent scheme of 20 mg/L ATMP and 60 mg/L NaOL. The results indicated that ATMP displayed an excellent depression effect on the dolomite flotation, whereas it rarely had an influence on magnesite. ATMP occupied a large number of active sites on dolomite surface through strongly interacting with the calcium sites, hindering the adsorption of NaOL on dolomite surface via electrostatic repulsion. In summary, the differential adsorption of the ATMP depressant onto magnesite and dolomite magnified the difference in hydrophobicity between them, which realizing the selective inhibition of dolomite.

  • 加载中
  • [1] PRASAD S V S, PRASAD S B, VERMA K, et al. The role and significance of Magnesium in modern day research-A review[J]. Journal of Magnesium and Alloys, 2022, 10: 1-61. doi: 10.1016/j.jma.2021.05.012

    CrossRef Google Scholar

    [2] 乌志明, 马培华. 镁、镁资源与镁质材料概述[J]. 盐湖研究, 2007, 15(4): 65-72. doi: 10.3969/j.issn.1008-858X.2007.04.012

    CrossRef Google Scholar

    WU Z M, MA P H. Summary of magnesium, magnesium resources and magnesium materials[J]. Journal of Salt Lake Research, 2007, 15(4): 65-72. doi: 10.3969/j.issn.1008-858X.2007.04.012

    CrossRef Google Scholar

    [3] WONYEN D G, KROMAH V, GIBSON B, et al. A review of flotation separation of Mg carbonates (dolomite and magnesite)[J]. Minerals, 2018, 8(8): 354-354. doi: 10.3390/min8080354

    CrossRef Google Scholar

    [4] LIU W B, PENG X Y, LIU W G, et al. Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite[J]. Powder Technology, 2020, 360: 1117-1125. doi: 10.1016/j.powtec.2019.10.060

    CrossRef Google Scholar

    [5] LIU A P, NI W, WU W. Mechanism of separating pyrite and dolomite by flotation[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2007, 14(4): 291-296. doi: 10.1016/S1005-8850(07)60057-7

    CrossRef Google Scholar

    [6] GENCE N. Wetting behavior of magnesite and dolomite surfaces[J]. Applied Surface Science, 2006, 252(10): 3744-3750. doi: 10.1016/j.apsusc.2005.05.053

    CrossRef Google Scholar

    [7] PELEKA E N, GALLIOS G P, MATIS K A. A perspective on flotation: A review[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(3): 615-623.

    Google Scholar

    [8] HAN C, ZHANG H, TAN R, et al. Effects of monohydric alcohols of varying chain lengths and isomeric structures on magnesite and dolomite flotation by dodecylamine[J]. Powder Technology, 2020, 374: 233-240. doi: 10.1016/j.powtec.2020.07.048

    CrossRef Google Scholar

    [9] TANG Y, YIN W Z, KELEBEK S. Molecular dynamics simulation of magnesite and dolomite in relation to flotation with cetyl phosphate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125928. doi: 10.1016/j.colsurfa.2020.125928

    CrossRef Google Scholar

    [10] LUO N, WEI D Z, SHEN Y B, et al. Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite[J]. Minerals, 2017, 7(8): 150. doi: 10.3390/min7080150

    CrossRef Google Scholar

    [11] YAO J, SUN H R, HAN F, et al. Enhancing selectivity of modifier on magnesite and dolomite surfaces by pH control[J]. Powder Technology, 2020, 362: 698-706. doi: 10.1016/j.powtec.2019.12.040

    CrossRef Google Scholar

    [12] CHEN G L, TAO D. Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate[J]. Separation science and technology, 2005, 39(2): 377-390. doi: 10.1081/SS-120027564

    CrossRef Google Scholar

    [13] SHI Q, FENG Q M, ZHANG G F, et al. A novel method to improve depressants actions on calcite flotation[J]. Minerals Engineering, 2014, 55: 186-189. doi: 10.1016/j.mineng.2013.10.010

    CrossRef Google Scholar

    [14] TIAN M J, GAO Z Y, HAN H S, et al. Improved flotation separation of cassiterite from calcite using a mixture of lead (Ⅱ) ion/benzohydroxamic acid as collector and carboxymethyl cellulose as depressant[J]. Minerals Engineering, 2017, 113: 68-70. doi: 10.1016/j.mineng.2017.08.010

    CrossRef Google Scholar

    [15] CHEN W, FENG Q M, ZHANG G F, et al. Selective flotation of scheelite from calcite using calcium lignosulphonate as depressant[J]. Minerals Engineering, 2018, 119: 73-75. doi: 10.1016/j.mineng.2018.01.015

    CrossRef Google Scholar

    [16] 王霞, 白媛丽, 思玉琥, 等. 氨基三甲叉膦酸的合成及其缓蚀阻垢性能[J]. 腐蚀与防护, 2012, 33(5): 404-410.

    Google Scholar

    WANG X, BAI Y L, SI Y H, et al. Synthesis and performance of amino trimethylene phosphonic acid[J]. Corrosion & Protection, 2012, 33(5): 404-410.

    Google Scholar

    [17] LIU C, AI G H, SONG S X. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite[J]. Powder Technology, 2018, 336: 527-532. doi: 10.1016/j.powtec.2018.06.030

    CrossRef Google Scholar

    [18] CHEN Y F, TANG X K. Selective flotation separation of smithsonite from calcite by application of amino trimethylene phosphonic acid as depressant[J]. Applied Surface Science, 2020, 512: 145663. doi: 10.1016/j.apsusc.2020.145663

    CrossRef Google Scholar

    [19] TANTAYAKOM V, FOGLER H S, DE MORAES F F, et al. Study of Ca-ATMP precipitation in the presence of magnesium Ion[J]. Langmuir, 2004, 20(6): 2220-2226. doi: 10.1021/la0358318

    CrossRef Google Scholar

    [20] LIU W B, LIU W G, ZHAO B, et al. Novel insights into the adsorption mechanism of the isopropanol amine collector on magnesite ore: a combined experimental and theoretical computational study[J]. Powder Technology, 2019, 343: 366-374. doi: 10.1016/j.powtec.2018.11.063

    CrossRef Google Scholar

    [21] YANG B, WANG D H, CAO S H, et al. Selective adsorption of a high-performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite[J]. Journal of Colloid and Interface Science, 2020, 578: 290-303. doi: 10.1016/j.jcis.2020.05.100

    CrossRef Google Scholar

    [22] XU L H, ZHANG S L, GUO S Y, et al. ATMP derived cobalt-metaphosphate complex as highly active catalyst for oxygen reduction reaction[J]. Journal of Catalysis, 2020, 387: 129-137. doi: 10.1016/j.jcat.2020.04.014

    CrossRef Google Scholar

    [23] YIN W Z, SUN H R, TANG Y, et al. Effect of pulp temperature on separation of magnesite from dolomite in sodium oleate flotation system[J]. Physicochemical Problems of Mineral Processing, 2019, 55: 1049-1058.

    Google Scholar

    [24] WANG J J, LI W H, ZHOU Z H, et al. 1-Hydroxyethylidene-1, 1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: depressing behavior and mechanism[J]. Chemical Engineering Science, 2020, 214: 115369. doi: 10.1016/j.ces.2019.115369

    CrossRef Google Scholar

    [25] STRANICK M A, ROOT M J. Influence of strontium on monofluorophosphate uptake by hydroxyapatite XPS characterization of the hydroxyapatite surface[J]. Colloids and surfaces, 1991, 55: 137-147. doi: 10.1016/0166-6622(91)80088-6

    CrossRef Google Scholar

    [26] GÖTTLICHER S, VEGAS A. Electron-density distribution in magnesite (MgCO3)[J]. Acta Crystallographica Section B: Structural Science, 1988, 44(4): 362-367. doi: 10.1107/S0108768188002332

    CrossRef Google Scholar

    [27] LAÇIN O, DÖNMEZ B, DEMIR F. Dissolution kinetics of natural magnesite in acetic acid solutions[J]. International Journal of Mineral Processing, 2005, 75(1/2): 91-99.

    Google Scholar

    [28] CHEN G L, TAO D. Effect of solution chemistry on flotability of magnesite and dolomite[J]. International Journal of Mineral Processing, 2004, 74(1/2/3/4): 343-357.

    Google Scholar

    [29] 孙文瀚, 代淑娟, 罗娜, 等. 基于矿石溶解性差异的菱镁矿酸浸脱钙[J]. 中国有色金属学报, 2019, 29(8): 1733-1739.

    Google Scholar

    SUN W H, DAI S J, LUO N, et al. Decalcification leaching test of magnesite based on solubleness difference of minerals[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(8): 1733-1739.

    Google Scholar

    [30] GLEDHILL W E, FEIJTEL T C J. Environmental properties and safety assessment of organic phosphonates used for detergent and water treatment applications[M]. Berlin: Springer, 1992: 261-285.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(1937) PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint