Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 1
Article Contents

BU Xiangning, CHEN Yuran, NI Chao, XIE Guangyuan. Ultrasound-Assisted Flotation of Low-Rank Coal: A Review of the Current Status[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 97-105. doi: 10.13779/j.cnki.issn1001-0076.2022.01.014
Citation: BU Xiangning, CHEN Yuran, NI Chao, XIE Guangyuan. Ultrasound-Assisted Flotation of Low-Rank Coal: A Review of the Current Status[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 97-105. doi: 10.13779/j.cnki.issn1001-0076.2022.01.014

Ultrasound-Assisted Flotation of Low-Rank Coal: A Review of the Current Status

More Information
  • Low-rank coal has developed surface pores and high content of oxygen-containing functional groups, resulting in unsatisfactory conventional flotation results. Numerous studies demonstrated that ultrasound is a commonly used enhancement method for coal flotation. This article first introduces the theory of ultrasonic cavitation (cavitation threshold, transient and steady-state cavitation) and acoustic radiation force (primary and secondary). Then, the research status of ultrasound-assisted flotation of low-rank coal is reviewed from 4 aspects: particle breakage, removal of the surface coating, modification of surface properties, emulsification and dispersion of flotation collectors, micro-nano-bubble effect, and the changes of flotation bubble size and foam layer changes. Finally, the development direction of the research on ultrasonic-enhanced low-rank coal flotation is prospected. It is suggested that the mechanism of ultrasound-assisted flotation of low-rank coal should be further studied from four aspects: the enhancement of steady-state cavitation on the surface hydrophobicity of low-rank coal, the formation of flocs between low-rank coal particle and cavitation bubbles induced by acoustic radiation force, the enhancement of transient cavitation on the collection performance of flotation reagents, the enhancement of bubble coalescence and the inhabit of gangue entrainment induced by acoustic radiation force.

  • 加载中
  • [1] 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388. doi: 10.3969/j.issn.1000-3045.2012.03.018

    CrossRef Google Scholar

    WANG J, ZHAO X. Demonstration of key technologies for clean and efficient utilization of low-rank coal [J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(3): 382-388. doi: 10.3969/j.issn.1000-3045.2012.03.018

    CrossRef Google Scholar

    [2] 安茂燕, 蒋荣立. 低阶煤浮选研究现状及分析[J]. 能源技术与管理, 2012(1): 117-119. doi: 10.3969/j.issn.1672-9943.2012.01.046

    CrossRef Google Scholar

    AN M, JIANG R. Status of research and analysis on low-rank coal flotation [J]. Energy Technology and Management, 2012(1): 117-119. doi: 10.3969/j.issn.1672-9943.2012.01.046

    CrossRef Google Scholar

    [3] 李振, 于伟, 杨超, 等. 低阶煤提质利用现状及展望[J]. 矿山机械, 2013, 41(7): 1-6.

    Google Scholar

    LI Z, YU W, YANG C, et al. Actuality and expectation on upgrading utilization of low-rank coal [J]. Mining & Processing Equipment, 2013, 41(7): 1-6.

    Google Scholar

    [4] 桂夏辉, 邢耀文, 王婷霞. 煤泥浮选过程强化之二——低阶/氧化煤难浮机理探讨篇[J]. 选煤技术, 2017(2): 79-83.

    Google Scholar

    GUI X, XING Y, WANG T. Coal flotation process intensification: part II-Study on mechnasim of difficulty in flotation of low-rank and oxidized coal [J]. Coal Preparation Technology, 2017, (2): 79-83.

    Google Scholar

    [5] 杨阳. 低阶煤浮选的试验研究[J]. 煤炭工程, 2013, 45: 105-107.

    Google Scholar

    YANG Y. Experiment study on floatation of low rank coal [J]. Coal Engineering, 2013, 45: 105-107.

    Google Scholar

    [6] 朱银惠. 煤化学(第二版)[M]. 北京: 化学工业出版社, 2011.

    Google Scholar

    ZHU Y. Coal chemistry (second edition) [M]. Beijing: Chemical Industry Press, 2011

    Google Scholar

    [7] 段旭琴, 曲剑午, 王祖讷. 低变质烟煤有机显微煤岩组分的孔结构分析[J]. 中国矿业大学学报, 2009, 38: 224-228.

    Google Scholar

    DUAN X, QU J, WANG Z. Pore structure of macerals from a low rank bituminous [J]. 2009, 38: 224-228.

    Google Scholar

    [8] 桂夏辉, 邢耀文, 连露露, 等. 煤泥浮选过程强化之三——低阶/氧化煤浮选界面强化篇[J]. 选煤技术, 2017(3): 87-91, 96.

    Google Scholar

    GUI X, XING Y, LIAN L, et al. Fine coal flotation process intensification-part Ⅲ: interface intensification of low-rank and oxidized coal [J]. 2017(3): 87-91, 96.

    Google Scholar

    [9] 荣国强. 低阶煤浮选的界面特性及药剂捕收作用机理研究[D]. 徐州: 中国矿业大学, 2019.

    Google Scholar

    RONG G. Study on interface characteristics and reagent collection mechanism of low rank coal flotation [D]. Xuzhou: China University of Mining and Technology, 2019.

    Google Scholar

    [10] 郑云婷. 低阶煤表面性质研究与浮选药剂的筛选[D]. 北京: 煤炭科学研究总院, 2016.

    Google Scholar

    ZHENG Y. Study on surface properties of low rank coal and screening of flotation reagents [D]. Beijing: China Coal Research Institute, 2016.

    Google Scholar

    [11] MAO Y, XIA W, PENG Y, et al. Ultrasonic-assisted flotation of fine coal: A review [J]. Fuel Processing Technology, 2019, 195: 106150. doi: 10.1016/j.fuproc.2019.106150

    CrossRef Google Scholar

    [12] OZKAN S G. A review of simultaneous ultrasound-assisted coal flotation [J]. Journal of Mining & Environment, 2018, 9(3): 389-679.

    Google Scholar

    [13] CHEN Y, TRUONG V N, BU X, et al. A review of effects and applications of ultrasound in mineral flotation [J]. Ultrasonics Sonochemistry, 2020, 60: 104739. doi: 10.1016/j.ultsonch.2019.104739

    CrossRef Google Scholar

    [14] 黄波, 徐宏祥, 李旭林. 微乳型捕收剂的稳定性和浮选性能的试验研究[J]. 煤炭学报, 2019, 44(9): 2878-2885.

    Google Scholar

    HUANG B, XU H, LI X. Experimental study on stability and flotation performance of micro-emulsion collector[J]. Journal of China Coal Society, 2019, 44(9): 2878-2885.

    Google Scholar

    [15] ZHOU S, WANG X, BU X, et al. Effects of emulsified kerosene nanodroplets on the entrainment of gangue materials and selectivity index in aphanitic graphite flotation[J]. Minerals Engineering, 2020, 158: 106592. doi: 10.1016/j.mineng.2020.106592

    CrossRef Google Scholar

    [16] 吴强, 姚澄, 朱昌平, 等. 超声清洗过程环境压力对声空化效应的影响[J]. 应用声学, 2015(5): 7.

    Google Scholar

    WU. Q, YAO C, ZHU C, et al. The influence of ambient pressure on acoustic cavitation during the process of ultrasonic cleaning [J]. 2015, 34: 391-397.

    Google Scholar

    [17] YASUI K. Acoustic cavitation and bubble dynamics [M]. Cham, Switzerland: Springer, 2018: 1-35.

    Google Scholar

    [18] FISHER J C. The fracture of liquids [J]. Journal of Applied Physics, 1948, 19(11): 1062-1067. doi: 10.1063/1.1698012

    CrossRef Google Scholar

    [19] GALLOWAY W J. An experimental study of acoustically induced cavitation in liquids [J]. The Journal of the Acoustical Society of America, 1954, 26(5): 849-857. doi: 10.1121/1.1907428

    CrossRef Google Scholar

    [20] PROSPERETTI A. Bubble phenomena in sould fields: part two [J]. Ultrasonics, 1984, 22(3): 115-124. doi: 10.1016/0041-624X(84)90006-4

    CrossRef Google Scholar

    [21] PROSPERETTI A. Bubble phenomena in sound fields: part one [J]. Ultrasonics, 1984, 22(2): 69-77. doi: 10.1016/0041-624X(84)90024-6

    CrossRef Google Scholar

    [22] CHEN Y, CHELGANI S C, BU X, et al. Effect of the ultrasonic standing wave frequency on the attractive mineralization for fine coal particle flotation [J]. Ultrasonics Sonochemistry, 2021, 77: 105682. doi: 10.1016/j.ultsonch.2021.105682

    CrossRef Google Scholar

    [23] ZHOU S, WANG X, BU X, et al. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles [J]. Ultrasonics Sonochemistry, 2020, 64: 105005. doi: 10.1016/j.ultsonch.2020.105005

    CrossRef Google Scholar

    [24] 陈昱冉. 超声驻波场中疏水颗粒稳态声团聚机理[D]. 徐州: 中国矿业大学, 2020.

    Google Scholar

    CHEN Y. Mechanism of steady-state acoustic agglomeration of hydrophobic particles in ultrasonic standing wave field [D]. Xuzhou: China University of Mining and Technology, 2020.

    Google Scholar

    [25] LUO X, CAO J, GONG H, et al. Phase separation technology based on ultrasonic standing waves: A review [J]. Ultrasonics Sonochemistry, 2018, 48: 287-298. doi: 10.1016/j.ultsonch.2018.06.006

    CrossRef Google Scholar

    [26] MASON T J. Ultrasonic cleaning: an historical perspective [J]. Ultrasonics Sonochemistry, 2016, 29: 519-523. doi: 10.1016/j.ultsonch.2015.05.004

    CrossRef Google Scholar

    [27] MA Y, CHEN H. Dynamic research of a translational bubble in a strong acoustic field [J]. Applied Acoustics, 2019, 146: 76-80. doi: 10.1016/j.apacoust.2018.10.024

    CrossRef Google Scholar

    [28] TRUJILLO F J, JULIANO P, BARBOSA-CáNOVAS G, et al. Separation of suspensions and emulsions via ultrasonic standing waves - a review[J]. Ultrasonics Sonochemistry, 2014, 21(6): 2151-2164. doi: 10.1016/j.ultsonch.2014.02.016

    CrossRef Google Scholar

    [29] MIZUSHIMA Y, NAGAMI Y, NAKAMURA Y, et al. Interaction between acoustic cavitation bubbles and dispersed particles in a kHz-order-ultrasound-irradiated water[J]. Chemical Engineering Science, 2013, 93: 395-400. doi: 10.1016/j.ces.2013.02.028

    CrossRef Google Scholar

    [30] KNüPFER P, DITSCHERLEIN L, PEUKER U A. Nanobubble enhanced agglomeration of hydrophobic powders[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530: 117-123.

    Google Scholar

    [31] CHEN Y, XIE G, CHANG J, et al. A study of coal aggregation by standing-wave ultrasound [J]. Fuel, 2019, 248: 38-46. doi: 10.1016/j.fuel.2019.03.030

    CrossRef Google Scholar

    [32] CHEN Y, ZHENG H, TRUONG V N, et al. Selective aggregation by ultrasonic standing waves through gas nuclei on the particle surface [J]. Ultrasonics Sonochemistry, 2020, 63: 104924. doi: 10.1016/j.ultsonch.2019.104924

    CrossRef Google Scholar

    [33] CHEN Y, NI C, XIE G, et al. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves[J]. Ultrasonics Sonochemistry, 2020, 64: 105003. doi: 10.1016/j.ultsonch.2020.105003

    CrossRef Google Scholar

    [34] 史英祥, 程宏志. 利用超声波强化煤泥浮选效果的研究[J]. 选煤技术, 2007(2): 8-10. doi: 10.3969/j.issn.1001-3571.2007.02.003

    CrossRef Google Scholar

    SHI Y, CHENG H. Research on enhancement of coal slime flotation performance by use of ultrasonic wave [J]. Coal Preparation Technology, 2007 (2): 8-10. doi: 10.3969/j.issn.1001-3571.2007.02.003

    CrossRef Google Scholar

    [35] 唐超. 超声预处理对煤泥浮选过程的强化作用研究[D]. 徐州: 中国矿业大学, 2014.

    Google Scholar

    TANG C. Study on strengthening effect of ultrasonic pretreatment on coal slime flotation process [D]. Xuzhou: China University of Mining and Technology.

    Google Scholar

    [36] XU M, XING Y, GUI X, et al. Effect of ultrasonic pretreatment on oxidized coal flotation [J]. Energy & Fuels, 2017, 31(12): 14367-14373.

    Google Scholar

    [37] 石焕, 史英祥. 超声处理对粉煤表面性质及浮选效果的影响[J]. 选煤技术, 2007(5): 21-23. doi: 10.3969/j.issn.1001-3571.2007.05.007

    CrossRef Google Scholar

    SHI H, SHI Y. Effect of supersonic treatment on surface property of fine coal and performance of flotation [J]. Coal Preparation Technology, 2007(5): 21-23. doi: 10.3969/j.issn.1001-3571.2007.05.007

    CrossRef Google Scholar

    [38] 康文泽, 吕玉庭. 超声波处理对煤泥特性的影响研究[J]. 中国矿业大学学报, 2006, 35(6): 783-786. doi: 10.3321/j.issn:1000-1964.2006.06.017

    CrossRef Google Scholar

    KANG W, LU Y. Effect of Ultrasonic Treatment on Slime Characteristics [J]. Journal of China University of Mining & Technology, 2006, 35(6): 783-786. doi: 10.3321/j.issn:1000-1964.2006.06.017

    CrossRef Google Scholar

    [39] 张红喜, 董宪姝, 王志忠. 超声波在煤浮选中的应用研究[J]. 选煤技术, 2008(2): 17-20. doi: 10.3969/j.issn.1001-3571.2008.02.007

    CrossRef Google Scholar

    ZHANG H, DONG X, WANG Z. Application research of ultrasoud in flotation [J]. Coal Preparation Technology, 2008(2): 17-20. doi: 10.3969/j.issn.1001-3571.2008.02.007

    CrossRef Google Scholar

    [40] 郑长龙, 茹毅. 超声预处理对低阶煤浮选的影响[J]. 煤炭工程, 2017, 49(5): 125-127.

    Google Scholar

    ZHENG Z, RU Y. Effect of ultrasonic pretreatment on low rank coal flotation [J]. Coal Engineering, 2017, 49(5): 125-127.

    Google Scholar

    [41] 毛玉强, 夏文成, 卜祥宁, 等. 超声波强化褐煤浮选及其作用机制探讨[J]. 煤炭学报, 2017, 42(11): 3006-3013.

    Google Scholar

    MAO Y, XIA W, BU X, et al. Discussion on ultrasonic enhanced lignite flotation and its action mechanism[J]. Journal of China Coal Society, 2017, 42(11): 3006-3013.

    Google Scholar

    [42] 李琳, 崔广文, 刘惠杰, 等. 超声微乳捕收剂的制备及煤泥浮选性能研究[J]. 洁净煤技术, 2016, 22(4): 68-72.

    Google Scholar

    LI L, CUI G, LIU H, et al. Preparation and flotation performance of ultrasonic microemulsified collector for slime [J]. Clean Coal Technology, 2016, 22(4): 68-72.

    Google Scholar

    [43] 王卫东, 张楠, 靳立章. 超声波同步处理强化煤泥浮选的试验研究[J]. 矿业科学学报, 2019, 4(4): 357-364.

    Google Scholar

    WANG W, ZHANG N, JIN L. Experiment study on fine coal slime flotation with simultaneous ultrasonic treatment [J]. Journal of Mining Science and Technology, 2019, 4(4): 357-364.

    Google Scholar

    [44] 郭伟, 刘生玉, 栗褒, 等. 超声条件下表面活性剂的选择性脱除对低阶煤泥浮选的影响[J]. 煤炭转化, 2019, 42(2): 78-83.

    Google Scholar

    GUO W, LIU S, LI B, et al. Effects of selective desorption of surfactant on low rank coal flotation under ultrasound [J]. Coal Conversion, 2019, 42(2): 78-83.

    Google Scholar

    [45] 孙小乐, 郭建英, 谢炙轩, 等. 超声条件下离子与表面活性剂对低阶煤泥浮选的影响[J]. 日用化学工业, 2020, 50(8): 523-528. doi: 10.3969/j.issn.1001-1803.2020.08.003

    CrossRef Google Scholar

    SUN X, GUO J, XIE Z, et al. Effects of ions and surfactant on low-rank coal slime flotation under ultrasonic conditions [J]. China Surfactant Detergent & Cosmetics, 2020, 50(8): 523-528. doi: 10.3969/j.issn.1001-1803.2020.08.003

    CrossRef Google Scholar

    [46] ALHESHIBRI M, QIAN J, JEHANNIN M, et al. A History of Nanobubbles [J]. Langmuir, 2016, 32(43): 11086-11100. doi: 10.1021/acs.langmuir.6b02489

    CrossRef Google Scholar

    [47] 王卫东, 靳立章. 细粒煤超声同步浮选的试验研究[J]. 煤炭学报, 2020, 45(8): 2949-2955.

    Google Scholar

    WANG W, JIN L. Ultrasonic simoltaneous flotation of coal fines[J]. Journal of China Coal Society, 2020, 45(8): 2949-2955.

    Google Scholar

    [48] ZHANG F, SUN L, YANG H, et al. Recent advances for understanding the role of nanobubbles in particles flotation [J]. Advances in Colloid and Interface Science, 2021, 291: 102403.

    Google Scholar

    [49] TAO D, WU Z, SOBHY A. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms [J]. Powder Technology, 2021, 379: 12-25. doi: 10.1016/j.powtec.2020.10.040

    CrossRef Google Scholar

    [50] NAZARI S, SHAFAEI S Z, GHARABAGHI M, et al. Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation [J]. International Journal of Mining Science and Technology, 2019, 29(2): 289-295. doi: 10.1016/j.ijmst.2018.08.011

    CrossRef Google Scholar

    [51] OZKAN S G. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes [J]. Fuel, 2012, 93: 576-580. doi: 10.1016/j.fuel.2011.10.032

    CrossRef Google Scholar

    [52] PENG Y, MAO Y, XIA W, et al. Ultrasonic flotation cleaning of high-ash lignite and its mechanism [J]. Fuel, 2018, 220(15): 558-566.

    Google Scholar

    [53] JADHAV A J, BARIGOU M. Response to "Comment on bulk nanobubbles or not nanobubbles: that is the question?" [J]. Langmuir, 2021, 37(1): 596-601. doi: 10.1021/acs.langmuir.0c03165

    CrossRef Google Scholar

    [54] NIRMALKAR N, PACEK A W, BARIGOU M. Bulk nanobubbles from acoustically cavitated aqueous organic solvent mixtures [J]. Langmuir, 2019, 35(6): 2188-2195. doi: 10.1021/acs.langmuir.8b03113

    CrossRef Google Scholar

    [55] NIRMALKAR N, PACEK A W, BARIGOU M. On the existence and stability of bulk nanobubbles[J]. Langmuir, 2018, 34(37): 10964-10973.

    Google Scholar

    [56] CHO S, KIM J, CHUN J, et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1): 28-34.

    Google Scholar

    [57] MO C, WANG J, FANG Z, et al. Formation and stability of ultrasonic generated bulk nanobubbles[J]. Chinese Physics B, 2018, 27(11): 118104.

    Google Scholar

    [58] BU X, ALHESHIBRI M. The effect of ultrasound on bulk and surface nanobubbles: A review of the current status [J]. Ultrasonics Sonochemistry, 2021, 76: 105629.

    Google Scholar

    [59] 王成会, 林书玉. 超声场中气泡的耦合运动[J]. 声学学报, 2011, 36: 325-331.

    Google Scholar

    WANG C, LIN S. The coupled motion of bubbles in ultrasonic field [J]. 2011, 36: 325-331.

    Google Scholar

    [60] JIAO J, HE Y, YASUI K, et al. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field [J]. Ultrasonics Sonochemistry, 2015, 22: 70-77.

    Google Scholar

    [61] FENG D, ALDRICH C. Effect of preconditioning on the flotation of coal [J]. Chemical Engineering Communications, 2005, 192(7): 972-983.

    Google Scholar

    [62] MAO Y, BU X, PENG Y, et al. Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite [J]. Fuel, 2020, 259: 116270.

    Google Scholar

    [63] MAO Y, CHEN Y, BU X, et al. Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force [J]. Fuel, 2019, 256: 115938.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(2596) PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint