Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 1
Article Contents

ZHAO Kai, LI Zhen, YU Wei, LIU Lijun, LI Xuezhen, CHANG Jing, YANG Chao, QU Jinzhou. Research on Desulfurization and Ash Reduction of Zichang Coal from Northern Shaanxi Province through Three Inorganic Inhibitors by Flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 89-96. doi: 10.13779/j.cnki.issn1001-0076.2022.01.013
Citation: ZHAO Kai, LI Zhen, YU Wei, LIU Lijun, LI Xuezhen, CHANG Jing, YANG Chao, QU Jinzhou. Research on Desulfurization and Ash Reduction of Zichang Coal from Northern Shaanxi Province through Three Inorganic Inhibitors by Flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 89-96. doi: 10.13779/j.cnki.issn1001-0076.2022.01.013

Research on Desulfurization and Ash Reduction of Zichang Coal from Northern Shaanxi Province through Three Inorganic Inhibitors by Flotation

More Information
  • Desulfurization and ash reduction are the key to clean utilization of medium and high sulfur coal, and flotation plays an important role in fine coal desulfurization. In order to improve the desulfurization and ash reduction effect of medium and high sulfur coal by flotation, taking Zichang coal from northern Shaanxi as the research object, the particle characteristics of raw coal were investigated by screening and float-sink test, and the distribution changes of pyrite in coal before and after flotation were investigated by coal petrography. The desulfurization and ash reduction effects of three non-toxic inorganic corrosion inhibitors: calcium oxide (CaO), ammonium sulfate (NH4)2SO4, sodium pyrophosphate decahydrate (Na4P2O7·10H2O) and their combination inhibitors were compared. The results show that the distribution density of pyrite decreases effectively after flotation, CaO has the best desulfurization and ash reduction effect, which is similar to (NH4)2SO4, followed by Na4P2O7·10H2O, but Na4P2O7·10H2O has almost no desulfurization effect. When the dosage of CaO and (NH4)2SO4 is 4 000 g·t-1 and 1 000 g·t-1, respectively, the sulfur content of cleaned coal is the lowest 1.83%. The highest desulfurization efficiency of CaO and (NH4)2SO4 is 18.28% and 12.35%, respectively. The desulfurization and deashing effect of CaO and (NH4)2SO4 is not as good as the three single inhibitors, but it can improve the desulfurization and deashing effect of fine coal to a certain extent. CaO and (NH4)2SO4 can be used as pyrite inhibitors to improve the desulfurization and the deashing efficiency of flotation.

  • 加载中
  • [1] 袁鉴. 煤炭脱硫技术研究进展[J]. 洁净煤技术, 2015, 21(4): 99-103.

    Google Scholar

    YUAN J. Research progress of coal desulfurization [J]. Clean Coal Technolgy, 2015, 21(4): 99-103.

    Google Scholar

    [2] 曹新鑫, 高艳芳, 柳菲, 等. 煤炭燃前脱硫工艺及其进展[J]. 煤炭技术, 2008(4): 115-117.

    Google Scholar

    CAO X X, GAO Y F, LIU F, et al. Development of desulfurizing process for coal before combustion [J]. Coal Technology, 2008(4): 115-117.

    Google Scholar

    [3] 魏强, 唐跃刚, 李薇薇, 等. 煤中有机硫结构研究进展[J]. 煤炭学报, 2015, 40(8): 1911-1923.

    Google Scholar

    WEI Q, TANG Y G, LI W W, et al. Research advances on organic sulfur structures in coal [J]. Journal of China Coal Society, 2015, 40(8): 1911-1923.

    Google Scholar

    [4] 曹世明, 曹亦俊, 马子龙, 等. 焦煤中微细粒嵌布黄铁矿的浮选脱除研究[J]. 中国矿业大学学报, 2019, 48(6): 1366-1374.

    Google Scholar

    CAO S M, CAO Y J, MA Z L, et al. The flotation separation of fine pyrite locked in coking coal [J]. Journal of China University of Mining & Technology, 2019, 48(6): 1366-1374.

    Google Scholar

    [5] 刘登朝. 西曲8#高硫煤浮选脱硫试验研究[J]. 选煤技术, 2015(1): 13-16.

    Google Scholar

    LIU D C. Experimental study on flotation desulfurization of high-sulfur coal in Xiqu mine 8# [J]. Coal Preparation Technology, 2015(1): 13-16.

    Google Scholar

    [6] KHOSO S A, GAO Z, TIAN M, et al. The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in Cu-S flotation scheme [J]. Journal of Molecular Liquids, 2020, 299: 112198. doi: 10.1016/j.molliq.2019.112198

    CrossRef Google Scholar

    [7] 朱振娜, 张海军, 杨露. 川东矿区高硫煤浮选脱硫试验研究[J]. 煤炭技术, 2017, 36(11): 312-315.

    Google Scholar

    ZHU Z N, ZHANG H J, YANG L. Experimental study on high-sulfur coal desulfurization by flotationin eastern sichuan basin mining area [J]. Coal Technology, 2017, 36(11): 312-315.

    Google Scholar

    [8] 刘森, 吴炎. 高硫煤中黄铁矿浮选抑制试验研究[J]. 洁净煤技术, 2015, 21(3): 40-43.

    Google Scholar

    LIU S, WU Y. Effects of pyrite depressor on high-sulfur coal flotation [J]. Clean Coal Technology, 2015, 21(3): 40-43.

    Google Scholar

    [9] 熊明金, 黄叶钿, 符剑刚, 等. 高硫煤深度浮选联合化学氧化脱灰脱硫提质研究[J]. 洁净煤技术, 2020, 26(4): 64-71.

    Google Scholar

    XIONG J M, HUANG Y T, FU J G, et al. Study on deashing, desulfurization and upgrading of high sulfur coal by deep-flotation combined with chemical oxidation [J]. Clean Coal Technology, 2020, 26(4): 64-71.

    Google Scholar

    [10] 程晨, 宋杨, 杨博, 等. 氧化钙强化高硫细煤泥浮选试验研究[J]. 贵州大学学报(自然科学版), 2020, 37(5): 54-60.

    Google Scholar

    CHENG C, SONG Y, YANG B, et al. Experimental study on enhanced flotation of high-sulfur fine coal slime by calcium oxide [J]. Journal of Guizhou University(Natural Sciences), 2020, 37(5): 54-60.

    Google Scholar

    [11] 王云雁, 朱申红, 马先军, 等. 细粒煤磁选-浮选脱硫脱灰试验研究[J]. 洁净煤技术, 2015, 21(3): 36-39.

    Google Scholar

    WANG Y Y, ZHU S L, MA X J, et al. Desulfurization and deashing of fine coal through magnetic separation-flotation [J]. Clean Coal Technolgy, 2015, 21(3): 36-39.

    Google Scholar

    [12] 陶有俊, 邓明瑞, 孙萌, 等. 细粒煤重介质离心分选脱硫试验研究[J]. 中国矿业大学学报, 2012, 41(5): 753-757.

    Google Scholar

    TAO Y J, DENG M R, SUN M, et al. Experiment research on desulphurization of fine coal using a centrifugal dense medium separation [J]. Journal of China University of Mining & Technology, 2012, 41(5): 753-757.

    Google Scholar

    [13] 王庆峰, 朱申红, 智雪娇, 等. 高硫煤磁选-浮选联合脱硫降灰的试验研究[J]. 选煤技术, 2014(1): 1-7.

    Google Scholar

    WANG Q F, ZHU S H, ZHI X J, et al. Experimental study on desulfurization and ash reduction of highsulfur coal by magnetic separation and flotation combined process [J]. Coal Preparation Technology, 2014(1): 1-7.

    Google Scholar

    [14] 张新海, 李勇, 马荣锴, 等. 某螯合捕收剂协同有机盐抑制剂浮选国外某高硫铜矿[J]. 矿产保护与利用, 2019, 39(4): 135-139.

    Google Scholar

    ZHANG X H, LI Y, MA R K, et al. Experimental study on flotation of a foreign High sulfur copper mineby a chelating collector cooperate with an organic salt inhibitor [J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 135-139.

    Google Scholar

    [15] 胡岳华, 章顺力, 邱冠周, 等. 石灰抑制黄铁矿的活化机理研究[J]. 中南大学学报(自然科学版), 1995(2): 176-180.

    Google Scholar

    HU Y H, ZHANG S L, QIU G Z, et al. Study on the activation mechanism of pyrite inhibited by lime [J]. Journal of Central South Univerisity(Science and Technology), 1995(2): 176-180.

    Google Scholar

    [16] 宋国君, 邓久帅, 先永骏, 等. 黄铁矿解抑活化机理研究现状及进展[J]. 矿物学报, 2017, 37(3): 328-332.

    Google Scholar

    SONG G J, DENG J S, XIAN Y J, et al. Derepression and activation of pyrite [J]. Acta Mineralogica Sinica, 2017, 37(3): 328-332.

    Google Scholar

    [17] 赵连兵, 先永骏, 文书明, 等. 黄铁矿的抑制及活化分选研究进展[J]. 矿产保护与利用, 2020, 40(2): 74-81.

    Google Scholar

    ZHAO L B, XIAN Y J, WEN S M, et al. Research progress on inhibition and activation separation of pyrite [J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 74-81.

    Google Scholar

    [18] 王李鹏, 叶雪均, 江皇义. 被石灰抑制的黄铁矿活化浮选技术进展[J]. 有色金属科学与工程, 2011, 2(4): 67-70.

    Google Scholar

    WANG L P, YE X J, JIANG H Y. Activation flotation technology advances of lime-suppressed pyrite [J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 67-70.

    Google Scholar

    [19] 黄会蓉, 金会心. 高硫煤浮选脱硫概况及其研究展望[J]. 选煤技术, 2011(6): 69-71. doi: 10.3969/j.issn.1001-3571.2011.06.023

    CrossRef Google Scholar

    HUANG H R, JIN H X. Overview and research prospect of high sulfur coal flotation desulfurization [J]. Coal Preparation Technology, 2011(6): 69-71. doi: 10.3969/j.issn.1001-3571.2011.06.023

    CrossRef Google Scholar

    [20] 邱廷省, 罗仙平, 方夕辉. 黄铁矿氧化抑制行为及机理研究[J]. 矿产综合利用, 2001(5): 17-20. doi: 10.3969/j.issn.1000-6532.2001.05.005

    CrossRef Google Scholar

    QIU Y S, LUO X P, FANG X H. Study on depression behavior and oxidation mechanism of pyrite [J]. Multipurpose Utilization of Mineral Resources, 2001(5): 17-20. doi: 10.3969/j.issn.1000-6532.2001.05.005

    CrossRef Google Scholar

    [21] 李健民, 宋凯伟, 章晓林, 等. 组合抑制剂柠檬酸钠和焦磷酸钠在某铅锌矿分离浮选中的作用[J]. 过程工程学报, 2017, 17(3): 500-505.

    Google Scholar

    LI J M, SONG K W, ZHANG X L, et al. Effect of combined reagents of sodium citrate and sodium pyrophosphate on flotation separation of a polymetallic lead-zinc ore [J]. The Chinese Journal of Process Engineering, 2017, 17(3): 500-505.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(4)

Article Metrics

Article views(1213) PDF downloads(95) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint