Citation: | AO Shunfu, ZHU Jiarui, XU Feng, YANG Ju, LU Jisi, WANG Cunzhu. Application Progress of Preconcentration and Discarding Technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 157-163. doi: 10.13779/j.cnki.issn1001-0076.2021.04.019 |
The mining of mineral resources will inevitably mix with surrounding rock and rock inclusion, resulting in the reduction of ore grade, with the development and utilization of a large number of mineral resources, the reserves of high-grade and easy to concentrate mineral resources are decreasing, and the economic and efficient development and utilization of low-grade and complex refractory mineral resources is becoming more and more urgent. The application of preconcentration for tailing discarding technology is of great significance to improve the grade of ore, reduce the amount of grinding, reduce the discharge of fine tailings, improve the utilization rate of resources and reduce environmental pollution. Be based on discarding of tailings by photoelectric beneficiation, gravity separation, magnetic separation, flotation, combined beneficiation process, the present situation and progress of preconcentration for tailing discarding technology are introduced respectively, and points out the advantages and disadvantages of all kinds of preconcentration for tailing discarding technology, each preconcentration for tailing discarding technology has its unique advantages, the combined beneficiation process be solve an effective development and utilization of low-grade mineral resources with an important technological breakthrough, preconcentration for tailing discarding technology will become a general and necessary process in mineral processing.
[1] | 罗仙平, 宁湘菡, 王涛, 等. 智能分拣选矿技术的发展及其应用[J]. 金属矿山, 2019(7): 113-117. |
[2] | 第旺平, 吴志虎. 智能光电选矿预选抛废技术研究及应用[J]. 有色金属(选矿部分), 2021(1): 117-121. |
[3] | 叶鑫, 叶芩沁. 色选机选矿在萤石矿的应用[J]. 内燃机与配件, 2018(8): 237-238. doi: 10.3969/j.issn.1674-957X.2018.08.136 |
[4] | 徐昌彦. 光电色选机在某矿分选中应用实践及优化[J]. 世界有色金属, 2016(9): 31-32. |
[5] | SALTER JD, WYATT NPG. Sorting in the minerals industry: past, present and future[J]. Minerals Engineering, 1991(4): 779-796. |
[6] | 郭忆, 边立国, 展仁礼. 酒钢桦树沟铁矿石智能分选机预选抛废试验研究[J]. 矿冶工程, 2021, 41(3): 61-63. doi: 10.3969/j.issn.0253-6099.2021.03.014 |
[7] | 黎多庆, 秦昌静. 浙江某铅锌矿应用XNDT-104射线智能分选机抛废分选试验[J]. 现代矿业, 2021(1): 142-144. |
[8] | 骆任. X射线辐射拣选机分选湖南某钨钼矿的半工业试验研究[J]. 湖南有色金属, 2017, 33(5): 18-19. doi: 10.3969/j.issn.1003-5540.2017.05.005 |
[9] | 王泽红, 陈晓龙, 韩跃新, 等. 用X射线辐射分选机预选某金铜共生矿石[J]. 金属矿山, 2013(7): 75-78. |
[10] | 王晓云. CXR-1000X射线分选机在临汾宏大豁口煤矿的应用[J]. 同煤科技, 2018(6): 9-10. |
[11] | 王普蓉, 王举. 云南某低品位高泥氧化锡矿石选矿试验[J]. 金属矿山, 2020(7): 83-88. |
[12] | 陈慧杰, 张莉. 重-磁联合工艺回收某白钨矿试验[J]. 矿产综合利用, 2016(3): 10-12. |
[13] | 王青芬. 粗粒锯齿波跳汰机用于贫矿预选的半工业试验研究[J]. 矿冶, 2001, 10(2): 31-35. |
[14] | 韦乐福, 黄闰芝. 车河选矿厂提高主流程抛废率技改实践[J]. 有色金属(选矿部分), 2016(4): 43-45. |
[15] | 徐凤平, 丁明胜, 冯其明. 重-浮联合工艺在低品位钨矿选别中的应用研究[J]. 矿冶工程, 2015, 35(3): 72-74. |
[16] | 魏大为. 柿竹园黑钨选别新工艺中的离心机抛尾探索研究[J]. 矿冶工程, 2019, 39(4): 59-62. |
[17] | 常学勇, 邵伟华, 郭珍旭, 等. 重选-浮选联合回收某硫化钼尾矿中氧化钼钨矿[J]. 矿产保护与利用, 2017(4): 40-43. |
[18] | 宋翔宇, 邱冠周, 周娇花, 等. 某细粒金红石矿重选富集工艺研究[J]. 矿冶工程, 2014, 34(6): 49-52. |
[19] | 刘书杰, 王中明, 刘方, 等. 重介质预抛对湖南某高碳酸钙型低品位白钨矿浮选试验的影响研究[J]. 有色金属(选矿部分), 2021(2): 69-79. |
[20] | 龙卫刚, 冯富斌. 某铅锌矿重介质分选扩大试验工艺研究[J]. 云冶金, 2021, 45(5): 30-34. |
[21] | 张存涛. CT-1416型永磁磁滑轮的结构特点及其应用效果[J]. 金属矿山, 2001(9): 56-57. |
[22] | 吴天骄, 靳建平, 李青. 甘肃某低品位铁矿石预先抛尾-弱磁选试验[J]. 现代矿业, 2016(4): 86-89. |
[23] | 成磊, 尚红亮, 朱道瑶. 外磁式磁选机应用于铁矿预选抛尾工艺的试验研究[J]. 有色金属(选矿部分), 2021(1): 117-121. |
[24] | 曾尚林, 张祖刚, 周润, 等. ZCLA选矿机应用于梅山铁矿预选工业试验研究[J]. 矿冶工程, 2020, 40(4): 57-59. |
[25] | 李辉跃, 曾尚林. ZCLA选矿机预先抛尾试验研究[J]. 矿冶工程, 2016, 36(2): 57-59. |
[26] | 曹钊, 屈奇奇, 曹永丹, 等. 破碎方式对贫磁铁矿预选效率和磨矿特性的影响[J]. 矿冶工程, 2017, 37(3): 50-53. |
[27] | 裴斌, 刘殿文, 李超杰, 等. 白云鄂博西矿超低品位铁矿磨前破碎预选工艺试验研究[J]. 现代矿业, 2021(7): 100-104. |
[28] | 马法成. 尖山铁矿石预选试验[J]. 现代矿业, 2016(7): 81-82. |
[29] | 李振乾, 王亚强. 大西沟磁铁矿石常规破碎产品预选抛尾试验研究[J]. 现代矿业, 2020(7): 155-157. |
[30] | 梁治安. 高压辊磨及湿式预选工艺在某大型铁矿山的应用[J]. 现代矿业, 2018(9): 140-142. |
[31] | 段景文, 王振堂, 陈普, 等. 刚果(金)某高碳酸盐氧化铜矿酸浸前浮选抛尾试验研究[J]. 矿冶工程, 2018, 38(8): 69-72. |
[32] | 王雅静, 张宗华, 高利坤. 某难选金红石矿选矿试验研究[J]. 矿产综合利用, 2008(1): 7-9. |
[33] | 任爱军, 赵希兵. 山西某金红石矿选矿试验研究[J]. 有色金属(选矿部分), 2008(2): 15-19. |
[34] | 列皮伦JO. 粗粒浮选的有效技术-泡沫中分选[J]. 国外金属矿选矿, 2004(9): 9-14. |
[35] | COWBURN J, HARBORT G, MANLAPIG E, et al. Improving the recovery of coarse coal particles in a Jameson cell[J]. Minerals Engineering, 2006, 19(8): 609-618. |
[36] | ANONYMOUS. Hydro float from Eriez recovers coarse particles up to 6 mm[J]. Mining Engineering, 2014, 66(11): 87-92. |
[37] | 顾敏, 罗里奥. 凡口铅锌矿废石生产建筑材料思路与成果[J]. 建材资讯, 2021, 28(4): 3-4. |
[38] | 洪永华, 兰希雄, 何庆浪, 等. 都龙矿区废石资源综合回收有价金属研究实践[J]. 有色金属(选矿部分), 2020(5): 73-77. |
[39] | 高利坤, 张宗华, 王雅静, 等. 陕西某微细粒难选金红石矿选矿试验研究[J]. 矿冶工程, 2008, 28(4): 42-44. |
[40] | 刘鑫, 张一敏, 刘涛, 等. 湖北某云母型含钒石煤重-浮联合预抛尾试验[J]. 金属矿山, 2017(5): 93-98. |
[41] | 张巍. 西南某稀土尾矿选矿预富集工艺试验[J]. 现代矿业, 2016(2): 63-65. |