Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

WU Jian, FANG Nan, SHENG Long, HE Qiang, ZHOU Xiaohui, CHENG Huicai. Removal Performance of Phosphorus from Water by High Temperature Modified Iron Ore Tailing[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 124-132. doi: 10.13779/j.cnki.issn1001-0076.2021.04.015
Citation: WU Jian, FANG Nan, SHENG Long, HE Qiang, ZHOU Xiaohui, CHENG Huicai. Removal Performance of Phosphorus from Water by High Temperature Modified Iron Ore Tailing[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 124-132. doi: 10.13779/j.cnki.issn1001-0076.2021.04.015

Removal Performance of Phosphorus from Water by High Temperature Modified Iron Ore Tailing

More Information
  • In order to improve the phosphorus removal capacity and investigate the process of iron ore tailing in water, the iron ore tailing was modified by heating. With the aim of phosphorus removal capacity, the response surface test was designed by taking temperature, time of constant temperature and heating rate as factors value. Moreover, the phosphorus removal process and performance of iron ore tailing before and after modification were analyzed by kinetics, isotherm and thermodynamics. The results shown that the maximum removal capacity of phosphorus by modified iron ore tailings is 2.43 mg/g at 600 ℃, which was 2.46 times that unmodified. Furthermore, It was concluded that Fe3O4 played a major role in increasing phosphorus removal capacity combined with literature and tailing sand composition analysis. The response surface regression model was significant (P < 0.0001) and the determination coefficient R2 was greater than 0.99, indicated that the regression model was reliable. The optimal modification conditions obtained from response surface test were as follows temperature 627.84 ℃, constant temperature 3.00 h, heating rate 9.82 ℃/min, which predicted maximum removal capacity of 17.43 mg/g. The removal of phosphorus by iron ore tailing before and after modification was chemisorbed on non-uniform surface. The removal process of phosphorus from water were closer to Freundlich isothermal model. Moreover, the maximum removal amount of phosphorus in Langmuir isothermal model by iron ore tailing before and after modification were estimated as 0.19 mg/g and 149.97 mg/g, respectively. Meanwhile, the removal of phosphorus by iron ore tailing was easy to occur, △H0>0 shown that removal process was endothermic and the removal capacity of phosphorus by iron ore tailing could be improved by increasing the temperature.

  • 加载中
  • [1] 衡忠暄, 单超, 花铭, 等. 不同价态无机磷在金属氧化物表面吸附的第一性原理研究[J]. 中国科学: 技术科学, 2021, 51: 591-600.

    Google Scholar

    [2] 何强, 何璇, 洪毅怡晖, 等. 铁盐辅助生物除磷工艺研究进展[J/OL]. 土木与环境工程学报(中英文): 1-8[2021-06-15]. http://kns.cnki.net/kcms/detail/50.1218.TU.20210525.1048.004.html.

    Google Scholar

    [3] 中华人民共和国生态环境部. 2020中国生态环境状况公报[EB/OL]. [2021-5-24], http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf.

    Google Scholar

    [4] 路畅, 陈洪运, 傅梁杰, 等. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021(5): 5011-5026.

    Google Scholar

    [5] 陈虎, 沈卫国, 单来, 等. 国内外铁尾矿排放及综合利用状况探讨[J]. 混凝土, 2012(2): 88-92. doi: 10.3969/j.issn.1002-3550.2012.02.028

    CrossRef Google Scholar

    [6] 潘德安, 逯海洋, 刘晓敏, 等. 铁尾矿建材化利用的研究进展与展望[J]. 硅酸盐通报, 2019(10): 3162-3169.

    Google Scholar

    [7] 王海军, 王伊杰, 李文超, 等. 全国矿产资源节约与综合利用报告(2019)[M]. 北京: 中国地质出版社, 2020.

    Google Scholar

    [8] TIE JX., NIU YF, XIAO H, et al. Performance of phosphorus adsorption by acid-activated iron-based waterworks sludge adsorbent[J]. Nature environment and pollution technology, 2021, 20(2): 747-751.

    Google Scholar

    [9] 张小宇, 张世熔, 王新月, 等. 镧改性农业废弃秸秆对养殖废水中磷的去除[J]. 环境化学, 2021(4): 1274-1284.

    Google Scholar

    [10] 杨天雪. 热处理赤泥对水体Cd(Ⅱ)和Pb(Ⅱ)的吸附特性及吸附机理研究[D]. 长春: 东北师范大学, 2019.

    Google Scholar

    [12] 国家环境保护局, GB 11893-89, 水质总磷的测定(钼酸铵分光光度法)[S]. 北京, 国家环境保护局, 1990.

    Google Scholar

    [13] 张冰倩, 李咏梅. 污泥中铁磷化合物分析方法的研究进展[J]. 四川环境, 2019(2): 115-118.

    Google Scholar

    [14] 杨颂, 上官炬, 杜文广, 等. 印尼某低品位红土镍矿的热解性能[J]. 金属矿山, 2016(8): 98-102. doi: 10.3969/j.issn.1001-1250.2016.08.020

    CrossRef Google Scholar

    [15] 李博, 魏永刚, 王华. 干燥过程中硅镁镍矿的作用机制及其相变特征[J]. 中国有色金属学报, 2013, 2(5): 1440-1446.

    Google Scholar

    [16] 王洪阳, 包焕均, 张文韬, 等. 铁橄榄石的氧化分解及碱浸溶硅[J]. 金属矿山, 2020(10): 167-173.

    Google Scholar

    [17] 胡小莲. 磁性纳米四氧化三铁及其复合材料吸附磷性能研究[D]. 南京: 南京理工大学, 2018.

    Google Scholar

    [18] 谢晶晶, 庆承松, 陈天虎, 等. 几种铁(氢)氧化物对溶液中磷的吸附作用对比研究[J]. 岩石矿物学杂志, 2007(6): 535-538. doi: 10.3969/j.issn.1000-6524.2007.06.011

    CrossRef Google Scholar

    [19] 高晓雯. 铁盐化学强化三种吸附材料的除磷特性研究[D]. 沈阳: 沈阳建筑大学, 2019.

    Google Scholar

    [20] 李一兵, 呼瑞琪, 张彦平, 等. 给水厂含铝污泥对含磷废水的吸附特性研究[J]. 工业水处理, 2018(5): 30-34.

    Google Scholar

    [21] 周宏光. 载纳米水合氧化铁复合半焦的研制及其除磷性能研究[D]. 重庆: 西南大学, 2014.

    Google Scholar

    [22] 常春, 刘天琪, 廉菲, 等. 不同热解条件下制备的秸秆炭对铜离子的吸附动力[J]. 环境化学, 2016(5): 1042-1049.

    Google Scholar

    [23] ADVA ZACH-MAOR, RAPHAEL SEMIAT, HILLA SHEMER. Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer: Interface and bulk interactions[J]. Journal of colloid and interface science, 2011, 363(2): 608-614. doi: 10.1016/j.jcis.2011.07.062

    CrossRef Google Scholar

    [24] CHEN X, WU L, LIU F, et al. Performance and mechanisms of thermally treated bentonite for enhanced phosphate removal from wastewater[J]. Environmental science and pollution research international, 2018, 25(16): 15980-15989. doi: 10.1007/s11356-018-1794-8

    CrossRef Google Scholar

    [25] JIN HY, LIN L, MENG XY, et al. A novel lanthanum-modified copper tailings adsorbent for phosphate removal from water[J]. Chemosphere, 2021, 281: 1-11.

    Google Scholar

    [26] SAMARAWEERA HASARA, SHARP ABIGAIL, EDWARDS JOHN, et al. Lignite, thermally-modified and Ca/Mg-modified lignite for phosphate remediation[J]. The Science of the total environment, 2021, 773: 1-14.

    Google Scholar

    [27] 张玉洁. 改性赤泥吸附除磷性能研究[D]. 北京: 北京建筑大学, 2014.

    Google Scholar

    [28] 彭莎. 改性沸石吸附水中典型污染物的性能与机理研究[D]. 武汉: 武汉大学, 2016.

    Google Scholar

    [29] 王春芳. 活性炭理化特性对饮用水中有机物吸附特性的影响研究[D]. 北京: 清华大学, 2015.

    Google Scholar

    [30] 那立艳, 张丽影, 张凤杰, 等. 固液界面吸附热力学参数的计算[J]. 材料导报, 2020(22): 22030-22035. doi: 10.11896/cldb.19080096

    CrossRef Google Scholar

    [31] 熊炜平. 基于铁金属有机骨架材料的水中典型抗生素去除行为机理研究[D]. 长沙: 湖南大学, 2019.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(6)

Article Metrics

Article views(1441) PDF downloads(68) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint