Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 3
Article Contents

CHEN Lingling, HAN Junwei, QIN Wenqing, Liu Wei. Advances in Comprehensive Utilization of Lead-zinc Smelting Slag[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 49-55. doi: 10.13779/j.cnki.issn1001-0076.2021.03.007
Citation: CHEN Lingling, HAN Junwei, QIN Wenqing, Liu Wei. Advances in Comprehensive Utilization of Lead-zinc Smelting Slag[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 49-55. doi: 10.13779/j.cnki.issn1001-0076.2021.03.007

Advances in Comprehensive Utilization of Lead-zinc Smelting Slag

More Information
  • The lead-zinc smelting industry produces a large increment of waste slag each year and a large historical stockpile. These slags are not only hazardous wastes, but also an important secondary resource. Therefore, the resource treatment of lead-zinc smelting slag has received extensive attention. The article elaborates on the current situation of lead-zinc smelting process in China, the generation and hazards of lead-zinc slag and the technological progress of comprehensive utilization of lead-zinc smelting slag. The research progress on the resource utilization of lead and zinc smelting slag is introduced especially.

  • 加载中
  • [1] 何章辉. 我国铅锌矿产资源的特征及选矿技术[J]. 科技展望, 2016, 26(2): 143. doi: 10.3969/j.issn.1672-8289.2016.02.124

    CrossRef Google Scholar

    [2] 戴自希. 世界铅锌资源的分布、类型和勘查准则[J]. 世界有色金属, 2005(3): 15-23, 6.

    Google Scholar

    [3] 雷力, 周兴龙, 文书明, 等. 我国铅锌矿产资源特点及开发利用现状[J]. 矿业快报, 2007, 263(9): 1-4.

    Google Scholar

    [4] 2020年铅锌行业运行情况[EB/OL]. (2021-02-08)[2021-04-09]. https://www.miit.gov.cn/gxsj/tjfx/yclgy/ys/art/2021/art_feb2f69776f246a3841737c829a5b48d.html.

    Google Scholar

    [5] 刘群. 铅锌冶炼渣的资源化研究进展[J]. 河南化工, 2017, 34(2): 11-15.

    Google Scholar

    [6] 刘凯凯, 周广柱, 周静. 铅锌冶炼渣性质及综合利用研究进展[J]. 山东化工, 2013, 42(7): 58-60, 64.

    Google Scholar

    [7] 郭儒, 杨晓松, 林星杰. 我国铅锌冶炼清洁生产技术现状及发展趋势[C]//2016中国环境科学学会学术年会. 2016: 4449-4453.

    Google Scholar

    [8] 李若贵. 我国铅锌冶炼工艺现状及发展[J]. 中国有色冶金, 2010, 39(6): 13-20. doi: 10.3969/j.issn.1672-6103.2010.06.003

    CrossRef Google Scholar

    [9] 张飞, 曾科. 铅冶炼行业现状及重金属污染防治对策分析[J]. 世界有色金属, 2018(9): 1-3. doi: 10.3969/j.issn.1002-5065.2018.09.001

    CrossRef Google Scholar

    [10] 李凯茂, 崔雅茹, 王尚杰, 等. 铅火法冶炼及其废渣综合利用现状[J]. 中国有色冶金, 2012, 41(2): 70-73. doi: 10.3969/j.issn.1672-6103.2012.02.019

    CrossRef Google Scholar

    [11] 蒋继穆. 中国铅锌冶炼技术盘点[J]. 中国有色金属, 2012(3): 32-33.

    Google Scholar

    [12] 侯晓波. 铅锌冶炼渣处理的系统分析及研究[J]. 云南冶金, 2011, 40(3): 42-46. doi: 10.3969/j.issn.1006-0308.2011.03.009

    CrossRef Google Scholar

    [13] 梁彦杰. 铅锌冶炼渣硫化处理新方法研究[D]. 长沙: 中南大学, 2012.

    Google Scholar

    [14] 《铅锌冶金学》委员会编著. 铅锌冶金学[M]. 北京: 科学出版社, 2003.

    Google Scholar

    [15] DU BY, ZHOU J, LU BX, et al. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China[J]. Science of the Total Environment, 2020, 720.

    Google Scholar

    [16] 陈凤, 董泽琴, 王程程, 等. 锌冶炼区耕地土壤和农作物重金属污染状况及风险评价[J]. 环境科学, 2017, 38(20): 4360-4369.

    Google Scholar

    [17] PAN DE'AN, LI LL, TIAN X, et al. A review on lead slag generation, characteristics, and utilization[J]. Resources, Conservation & Recycling, 2019, 146: 140-155.

    Google Scholar

    [18] 邓新辉, 柴立元, 杨志辉, 等. 铅锌冶炼废渣堆场土壤重金属污染特征研究[J]. 生态环境学报, 2015(9): 1534-1539.

    Google Scholar

    [19] 孙坚, 耿春雷, 张作泰, 等. 工业固体废弃物资源综合利用技术现状[J]. 材料导报, 2012, 26(11): 105-109. doi: 10.3969/j.issn.1005-023X.2012.11.021

    CrossRef Google Scholar

    [20] 齐兆轩, 于洋. 有色金属冶炼废渣湿法回收技术研究[J]. 世界有色金属, 2018(15): 26-27. doi: 10.3969/j.issn.1002-5065.2018.15.017

    CrossRef Google Scholar

    [21] 高丽霞, 戴子林, 李桂英, 等. 从湿法锌冶炼废渣中高效回收银的研究[J]. 有色金属(冶炼部分), 2016(4): 45-48, 65. doi: 10.3969/j.issn.1007-7545.2016.04.012

    CrossRef Google Scholar

    [22] 高丽霞, 戴子林, 张魁芳, 等. 从湿法锌冶炼废渣中提取银和铅[J]. 有色金属(冶炼部分), 2018(5): 29-32. doi: 10.3969/j.issn.1007-7545.2018.05.007

    CrossRef Google Scholar

    [23] 周起帆, 蒋开喜, 王海北, 等. 锌冶炼铅银渣湿法浸出工艺研究[J]. 有色金属(冶炼部分), 2018(6): 1-4. doi: 10.3969/j.issn.1007-7545.2018.06.001

    CrossRef Google Scholar

    [24] 彭兵, 林冬红, 刘恢, 等. 高铁锌焙砂还原焙烧-碱浸工艺[J]. 中国有色金属学报, 2017, 27(2): 423-429.

    Google Scholar

    [25] 何启贤, 周裕高, 覃毅力, 等. 锌浸出渣回转窑富氧烟化工艺研究[J]. 中国有色冶金, 2017, 46(3): 49-54. doi: 10.3969/j.issn.1672-6103.2017.03.014

    CrossRef Google Scholar

    [26] 陈萃. 烟化吹炼技术的现状和发展[J]. 中国有色冶金, 2017, 46(1): 23-25, 53.

    Google Scholar

    [27] 蒋荣生, 柴立元, 贾著红, 等. 烟化法处理铅锌冶炼渣的生产实践与探讨[J]. 云南冶金, 2014, 43(1): 58-61.

    Google Scholar

    [28] 蒋建兴, 李样人, 郭海军. 基夫赛特炼铅工艺实践[J]. 世界有色金属, 2018(18): 7-9.

    Google Scholar

    [29] 谢朝学, 袁慧珍. 用充填式浮选机回收铅锌浸渣中银的试验研究[J]. 金属矿山, 2007(5): 81-83.

    Google Scholar

    [30] YANG ZC, GE YY, ZHANG YL, et al. Recovery of silver from zinc acid-leaching residue by flotation[J]. Applied Mechanics & Materials, 2013, 392: 14-23.

    Google Scholar

    [31] 何名飞, 简胜, 张晶. 锌浸出渣中银矿物关键选冶技术研究[J]. 云南冶金, 2016, 45(4): 21-24.

    Google Scholar

    [32] YAO W, LI ML, ZHANG M, et al. Lead recovery from znc leaching residue by flotation[J]. JOM, 2019, 71(12): 4588-4593. doi: 10.1007/s11837-019-03526-4

    CrossRef Google Scholar

    [33] 李琛, 韩俊伟, 刘维, 等. 锌浸出渣银浮选回收试验初探[J]. 有色金属(选矿部分), 2018(6): 35-39.

    Google Scholar

    [34] HAN JW, LIU W, QIN WQ, et al. Effects of sodium salts on the sulfidation of lead smelting slag[J]. Minerals Engineering, 2017, 108: 1-11.

    Google Scholar

    [35] HAN JW, LIU W, WANG DW, et al. Selective sulfidation of lead smelter slag with pyrite and flotation behavior of synthetic ZnS[J]. Metallurgical and Materials Transactions B, 2016, 47(4): 2400-2410. doi: 10.1007/s11663-016-0693-y

    CrossRef Google Scholar

    [36] HAN JW, LIU W, WANG DW, et al. Selective sulfidation of lead smelter slag with sulfur[J]. Metallurgical & Materials Transactions B, 2016, 47(1): 344-354.

    Google Scholar

    [37] ZHANG B, ZHU L, LIU W, et al. Sulfidation and sulfur fixation of jarosite residues during reduction roasting[J]. Metallurgical & Materials Transactions B, 2019, 50(2): 761-771. doi: 10.1007/s11663-019-01517-z

    CrossRef Google Scholar

    [38] 肖鹏. 锌窑渣选冶联合综合回收有价金属工艺研究[D]. 昆明: 昆明理工大学, 2018.

    Google Scholar

    [39] WANG YY, YANG HF, JIANG B, et al. Comprehensive recovery of lead, zinc, and iron from hazardous jarosite residues using direct reduction followed by magnetic separation[J]. International Journal of Minerals, Metallurgy and Materials, 2018; 25(2): 123-130. doi: 10.1007/s12613-018-1555-1

    CrossRef Google Scholar

    [40] 韩俊伟. 选冶联合清洁处理高铁锌焙砂新技术研究[D]. 长沙: 中南大学, 2014.

    Google Scholar

    [41] HAN JW, LIU W, QIN WQ, et al. Innovative methodology for comprehensive utilization of high iron bearing zinc calcine[J]. Separation and Purification Technology, 2015, 154: 263-270.

    Google Scholar

    [42] HAN JW, LIU W, QIN WQ, et al. Recovery of zinc and iron from high iron-bearing zinc calcine by selective reduction roasting[J]. Journal of Industrial and Engineering Chemistry, 2015, 22: 272-279.

    Google Scholar

    [43] LIU W, HAN JW, QIN WQ, et al. Reduction roasting of high iron bearing zinc calcine for recovery of zinc and iron[J]. Canadian Metallurgical Quarterly, 2014, 53(2): 176-182.

    Google Scholar

    [44] HAN JW. Removal of iron impurity from zinc calcine after magnetization roasting[C]. //7th International symposium on High-Temperature Metallurgical Processing. TMS (The Minerals, Metals & Materials Society), 2016: 543-550.

    Google Scholar

    [45] 孙双月, 蔡靖. 利用铅锌冶炼废渣制备碱激发胶凝材料的试验研究[J]. 广东化工, 2016, 43(5): 39-40.

    Google Scholar

    [46] XIA M, MUHAMMAND FAHEEM, ZENG LH, et al. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer[J]. Journal of Cleaner Production, 2019, 209: 1206-1215.

    Google Scholar

    [47] LI S, HUANG X, MUHAMMAND FAHEEM, et al. Waste solidification/stabilization of lead–zinc slag by utilizing fly ash based geopolymers[J]. RSC Advances, 2018, 8(57): 32956-32965.

    Google Scholar

    [48] 孙双月, 牛丽红, 王聪. 铅锌冶炼废渣和尾矿制备地聚合物的研究[J]. 中国矿业, 2015(7): 48-52.

    Google Scholar

    [49] ZHANG PP, MUHAMMAND FAHEEM, YU L, et al. Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials[J]. Construction and Building Materials, 2020, 249.

    Google Scholar

    [50] 郭斌. 铅锌冶炼渣制备微晶玻璃和地质聚合物及其铅镉固化机理[D]. 北京: 北京科技大学, 2017.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(2238) PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint