Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

LI Shaoping, ZHANG Junmin, Dilinuer· Abudukade, WANG Yali. Research Status and Prospect of Lepidolite Flotation Collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 77-82. doi: 10.13779/j.cnki.issn1001-0076.2020.06.012
Citation: LI Shaoping, ZHANG Junmin, Dilinuer· Abudukade, WANG Yali. Research Status and Prospect of Lepidolite Flotation Collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 77-82. doi: 10.13779/j.cnki.issn1001-0076.2020.06.012

Research Status and Prospect of Lepidolite Flotation Collectors

  • With the large-scale development of lepidolite resources in China, the problem of poor fine and impurities has became more prominent. The efficient recovery of lepidolite has become a research hotspot in the field of mineral processing. This paper summarizes the main influencing factors and research status of lepidolite flotation collectors. The research on the mechanism of collectors and the development and promotion of new collectors should be increased.

  • 加载中
  • [1] 李承元, 李勤, 朱景和. 世界锂资源的开发应用现状及展望[J]. 国外金属矿选矿, 2001(8): 22-26.

    Google Scholar

    [2] 谭秀民, 张永兴, 张利珍, 等. 能源金属锂资源开发利用现状及发展建议[J]. 矿产保护与利用, 2017(5): 87-92.

    Google Scholar

    [3] 袁剑鹏, 申军. 新能源背景下的锂资源分类、开发及工业应用[J]. 化工矿物与加工, 2016, 45(6): 82-84.

    Google Scholar

    [4] HANNA V, SIMON D, MIKAEL H. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110(110). 252-266.

    Google Scholar

    [5] 刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263-278.

    Google Scholar

    [6] 朱文龙, 黄万抚. 国内外锂矿物资源概况及其选矿工艺综述[J]. 现代矿业, 2010, 26(7): 1-4. doi: 10.3969/j.issn.1674-6082.2010.07.001

    CrossRef Google Scholar

    [7] 方霖, 郭珍旭, 刘长淼, 等. 云母矿物浮选研究进展[J]. 中国矿业, 2015, 24(3): 131-136. doi: 10.3969/j.issn.1004-4051.2015.03.029

    CrossRef Google Scholar

    [8] JAERYEONG L. Extraction of Lithium from Lepidolite Using Mixed Grinding with Sodium Sulfide Followed by Water Leaching[J]. Minerals, 2015, 5(4): 737-743. doi: 10.3390/min5040521

    CrossRef Google Scholar

    [9] THI T, VAN T, RETO G, et al. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching[J]. Hydrometallurgy, 2015, 153: 154-159. doi: 10.1016/j.hydromet.2015.03.002

    CrossRef Google Scholar

    [10] PANKAJ K. C, MIN-SEUK K, RAJIV R. S, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part Ⅰ: From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137. doi: 10.1016/j.mineng.2016.01.010

    CrossRef Google Scholar

    [11] 胡熙庚. 浮选理论与工艺[M]. 长沙: 中南工业大学出版社, 1991: 231-237.

    Google Scholar

    [12] 纪国平, 张迎棋. 浅析铁介质磨矿对云母浮选的影响[J]. 新疆有色金属, 2009, 32(1): 46-47.

    Google Scholar

    [13] CALGAROTO S, AZEVEDO A, RUBIO J. Separation of amine-insoluble species by flotation with nano and microbubbles[J]. Minerals Engineering, 2016, 89: 24-29. doi: 10.1016/j.mineng.2016.01.006

    CrossRef Google Scholar

    [14] NATHáLIA V, FERNANDO O. D, CARLOS G, et al. Grade-recovery modelling and optimization of the froth flotation process of a lepidolite ore[J]. International Journal of Mineral Processing, 2016(157): 184-194. doi: 10.1016/j.minpro.2016.11.005

    CrossRef Google Scholar

    [15] 孙传尧. 硅酸盐矿物浮选原理[M]. 北京: 科学出版社, 2001: 468-469.

    Google Scholar

    [16] 冯金妮. 锂云母高效捕收剂的选择及机理研究[D]. 赣州: 江西理工大学, 2013.

    Google Scholar

    [17] 刘臻. 锂云母浮选过程试验与分子模拟研究[D]. 上海: 华东理工大学, 2015.

    Google Scholar

    [18] 吕子虎, 赵登魁, 沙惠雨, 等. 阴阳离子组合捕收剂浮选锂云母的试验研究[J]. 矿产保护与利用, 2017(2): 81-84.

    Google Scholar

    [19] 李利娟, 张凡. 某钽铌重选尾矿中的锂云母浮选试验研究[J]. 矿业研究与开发, 2013, 33(2): 57-59.

    Google Scholar

    [20] 王威, 常学勇, 柳林, 等. 赣州某钨尾矿中锂的浮选回收与浸出试验[J]. 金属矿山, 2018(11): 185-188.

    Google Scholar

    [21] Roberts J. UN sets out Latin America's lithium agenda[J]. Industrial Minerals, 2011(520): 42-43.

    Google Scholar

    [22] 张婷, 李平, 李振飞. 某钽铌矿重选尾矿中锂云母回收试验研究[J]. 矿冶, 2017, 26(6): 22-26.

    Google Scholar

    [23] 赖纪全. 粗长石粉中回收锂云母的试验研究[J]. 中国金属通报, 2019(7): 144-145.

    Google Scholar

    [24] 李建伟, 张忠伟, 张晓鹏, 等. 内蒙古某锂多金属矿石选矿试验研究[J]. 世界有色金属, 2018(8): 158-160.

    Google Scholar

    [25] 秦伍, 李同其, 王念峰, 等. 提高锂云母精矿品位及回收率的浮选工艺研究[J]. 佛山陶瓷, 2018, 28(8): 27-31. doi: 10.3969/j.issn.1006-8236.2018.08.010

    CrossRef Google Scholar

    [26] 刘跃龙, 王林林, 刘够生. 十二胺捕收剂在三种不同矿物表面吸附的分子动力学模拟[J]. 有色金属工程, 2020, 10(7): 82-87.

    Google Scholar

    [27] 龙运波, 朱昌洛, 杨磊. 甘肃某铷多金属矿浮选锂云母选矿试验研究[J]. 矿产综合利用, 2016(4): 74-77. doi: 10.3969/j.issn.1000-6532.2016.04.017

    CrossRef Google Scholar

    [28] JUNHYUN C, WANTAE K, WOORI C, et al. Electrostatically controlled enrichment of lepidolite via flotation[J]. Materials transactions, 2012, 53(12): 2191-2194. doi: 10.2320/matertrans.M2012235

    CrossRef Google Scholar

    [29] 焦芬, 覃文庆, 王云帆, 等. 一种锂云母浮选方法: 201710322482.6[P]. 2019-01-25.

    Google Scholar

    [30] FILIPPOV L. O, FILIPPOVA I. V, SEVEROV V. V. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates[J]. Minerals Engineering, 2009, 23(2): 91-98.

    Google Scholar

    [31] SANTANU P, KHILAR K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface[J]. Advances in Colloid and Interface Science, 2004, 110(3): 75-95. doi: 10.1016/j.cis.2004.03.001

    CrossRef Google Scholar

    [32] HANUMANTHA RAO K, FORSSBERG K. S. E. Mixed collector systems in flotation[J]. International Journal of Mineral Processing, 1997, 51(1): 67-79.

    Google Scholar

    [33] 何桂春, 黄开启, 安占涛, 等. 一种新型锂云母浮选方法. 中国: 201310163993[P], 2013-08-14.

    Google Scholar

    [34] 王林林, 朱灵燕, 刘跃龙, 等. 混合捕收剂在锂云母表面吸附行为的分子动力学模拟研究[J]. 有色金属(选矿部分), 2019(2): 108-114.

    Google Scholar

    [35] 王林林, 朱灵燕, 刘跃龙, 等. 阴阳离子混合捕收剂用于中低品位锂云母的浮选试验研究[J]. 有色金属(选矿部分), 2019(3): 86-92.

    Google Scholar

    [36] 杨刚. 弱酸条件下含铷锂云母与长石的浮选分离研究[D]. 北京: 北京有色金属研究总院, 2020.

    Google Scholar

    [37] 张慧婷. 十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D]. 赣州: 江西理工大学, 2017.

    Google Scholar

    [38] 丰丽琴, 王云帆, 覃文庆, 等. 江西某低品位锂云母矿浮选试验研究[J]. 非金属矿, 2019, 42(1): 60-62.

    Google Scholar

    [39] 刘勇, 黄霞光, 陈果. 某钽铌矿磨重尾矿中锂云母的回收试验研究[J]. 中国非金属矿工业导刊, 2016(2): 28-30. doi: 10.3969/j.issn.1007-9386.2016.02.010

    CrossRef Google Scholar

    [40] 艾光华, 严华山, 吴艺鹏, 等. 综合回收某含钽铌锂云母矿的选矿试验研究[J]. 非金属矿, 2014, 37(4): 4-6.

    Google Scholar

    [41] 郭文萍, 刘述春. 低品位难选锂云母浮选的工业试验[J]. 矿业工程, 2019, 17(6): 27-29.

    Google Scholar

    [42] BULATOVIC S M. Beneficiation of lithium ores-science direct[J]. Handbook of Flotation Reagents: Chemistry, Theory & Practice, 2015, 3: 41-56.

    Google Scholar

    [43] BOGALE T, FIDELE MI, BORIS A, et al. The beneficiation of lithium minerals from hard rock ores: A review[J]. Minerals Engineering, 2019, 131: 170-184.

    Google Scholar

    [44] 陈小爱. 提高锂云母精矿品位及回收率的试验探讨[J]. 江西有色金属, 2007(1): 18-19.

    Google Scholar

    [45] 黄万抚, 肖芫华, 李新冬, 等. HT选锂剂提高锂云母精矿品位及回收率研究[J]. 有色金属(选矿部分), 2012(4): 76-78.

    Google Scholar

    [46] 苏建芳, 王中明, 刘书杰, 等. BK414在宜春钽铌矿浮选锂云母的工业试验[J]. 中国矿业, 2016, 25(7): 114-117.

    Google Scholar

    [47] 刘书杰, 王中明, 陈定洲, 等. 某钽铌尾矿锂云母、长石分离试验研究[J]. 有色金属(选矿部分), 2013(1): 177-179.

    Google Scholar

    [48] 周高云. 浮选锂云母的新捕收剂研究[J]. 北京矿冶研究总院学报, 1992(1): 60-63.

    Google Scholar

    [49] 何桂春, 冯金妮, 毛美心, 等. 组合捕收剂在锂云母浮选中的应用研究[J]. 非金属矿, 2013, 36(4): 29-31.

    Google Scholar

    [50] 周贺鹏, 耿亮, 郭亮, 等. 江西宜春低品位锂云母矿综合回收工艺研究[J]. 非金属矿, 2020, 43(4): 59-61.

    Google Scholar

    [51] 黄志强, 何桂春, 邱廷省, 等. 一种新型表面活性剂在锂云母矿浮选上的应用方法: 201910748299.1[P]. 2019-12-03.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(1650) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint