Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

LI Yingying, LI Fengjiu, Wang Di, LI Guofeng. Research Status on Ultrafine Crushing and Its Application in Processing of Phosphate Rock[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 47-51. doi: 10.13779/j.cnki.issn1001-0076.2020.06.007
Citation: LI Yingying, LI Fengjiu, Wang Di, LI Guofeng. Research Status on Ultrafine Crushing and Its Application in Processing of Phosphate Rock[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 47-51. doi: 10.13779/j.cnki.issn1001-0076.2020.06.007

Research Status on Ultrafine Crushing and Its Application in Processing of Phosphate Rock

More Information
  • Ultrafine crushing technology is an important technical means to process raw materials into microns or even nanometers, and its research can effectively improve resource utilization. Due to mechanical force, grain size reduction, crystal dislocation, and defects were introduced, in the process of ultrafine crushing, which will result in lattice distortion and other structural changes. The effect of grinding agents on ultrafine crushing was also listed. Furthermore, the effect of ultrafine crushing on the crystalline structure of minerals and the phosphorus release capacity of phosphate ore were mainly discussed. Meanwhile, the typical ultrafine crushing equipment and its applicable scope and advantages and disadvantages are introduced.

  • 加载中
  • [1] 尹艳红, 朱应禄. 机械力化学及其发展趋势[J]. 冶金丛刊, 2008(6): 37-39.

    Google Scholar

    [2] 闫蒙钢, 慈洁琳. 物理化学的奠基者-奥斯特瓦尔德[J]. 大学化学, 2013, 28(6): 71-74

    Google Scholar

    [3] 杨华明, 邱冠周, 王淀佐. 超细粉碎机械化学的发展[J]. 金属矿山, 2000(9): 21-24, 31. doi: 10.3321/j.issn:1001-1250.2000.09.007

    CrossRef Google Scholar

    [4] 尹小冬, 王长会, 谭涌, 等. 超细粉碎技术现状与应用[J]. 中国非金属矿工业导刊, 2009(3): 46-49. doi: 10.3969/j.issn.1007-9386.2009.03.016

    CrossRef Google Scholar

    [5] 王瑛玮. 矿物超细粉碎方法研究与磨矿试验[D]. 长春: 吉林大学, 2005.

    Google Scholar

    [6] 罗驹华. 非金属矿物粉体机械力化学研究进展[J]. 化工矿物与加工, 2004(11): 5-8. doi: 10.3969/j.issn.1008-7524.2004.11.002

    CrossRef Google Scholar

    [7] 张平, 孟磊, 石元亮. 不同类型磷矿石的机械活化效果研究[J]. 化工矿物与加工, 2014, 43(8): 13-15, 19.

    Google Scholar

    [8] STRATIGAKI MARIA, GOSTL ROBERT. Methods for Exerting and Sensing Force in Polymer Materials Using Mechanophores. [J]. Chem Plus Chem, 2020, 85(6): 1095-1103.

    Google Scholar

    [9] 李冷, 曾宪滨. 粉碎机械力化学的进展及其在材料开发中的应用[J]. 武汉工业大学学报, 1993(1): 23-26. doi: 10.3321/j.issn:1671-4431.1993.01.005

    CrossRef Google Scholar

    [10] WU KJ, JU T, DENG Y, et al. Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. [J]. Trends in Food Science & Technology, 2017, 66: 166-175.

    Google Scholar

    [11] KATCHALSKY A, ZWICK M. Zwick. Mechanochemistry and ion exchange[J]. Journal of Polymer Science, 1955, 16(82): 221-23. doi: 10.1002/pol.1955.120168212

    CrossRef Google Scholar

    [12] AHEMD EJAZ, KAROTHU DURGA PRASAD, et al. From mechanical effects to mechanochemistry: softening and depression of the melting point of deformed plastic crystals. [J]. Journal of the American Chemical Society 2020, 142(25): 11219-11231. doi: 10.1021/jacs.0c03990

    CrossRef Google Scholar

    [13] KRAVCHENKO VP, BAGLYUK GA, TROTSAN AI. Effectiveness of jet milling for producing superfine powders from blast-furnace slag. [J]. Powder Metallurgy and Metal Ceramics, 2017, 55: (11-12). doi: 10.1007/s11106-017-9863-y

    CrossRef Google Scholar

    [14] EDWIN H. MENA, TAO LIU, XIANYAN LIAO, et al, Junyi Huang. Effect of superfine grinding on the phytochemicals and antioxidant activities of mulberry leaves[J]. Science Journal of Public Health, 2016, 4(3): 138. doi: 10.11648/j.sjph.20160403.11

    CrossRef Google Scholar

    [15] 李鹏举, 谭琦, 赵姬, 等. 低品位滑石超细粉碎-表面改性一体化研究[J]. 矿产保护与利用, 2016(3): 45-48.

    Google Scholar

    [16] 罗驹华, 张少明. 机械力化学法制备单相莫来石的机理研究[J]. 硅酸盐学报, 2005(5): 568-571. doi: 10.3321/j.issn:0454-5648.2005.05.008

    CrossRef Google Scholar

    [17] 王宇斌, 文堪, 汪潇, 等. 白云母粉体超细磨过程研究[J]. 矿产保护与利用, 2019(2): 70-74.

    Google Scholar

    [18] 田文, 吕莉, 梁斌, 等. 机械活化对钛铁矿高温氧化过程的影响[J]. 化学反应工程与工艺, 2011, 27(6): 537-542. doi: 10.3969/j.issn.1001-7631.2011.06.010

    CrossRef Google Scholar

    [19] 胡保全, 白培康, 程军. 高能球磨制备Mo-3%Cu纳米晶复合粉末特性[J]. 功能材料, 2011, 42(S1): 73-75.

    Google Scholar

    [20] DUAN H, MU XF, WANG Y. The efficiency analysis on assistant-grinding of lignosulfonate and its modified composites. [J]. IOP Conference Series: Materials Science and Engineering 2018, 2(2): 21-23. doi: 10.1088/1757-899X/284/1/012025

    CrossRef Google Scholar

    [21] 潘东, 杨建国, 葛源, 等. 煤基碳素的石英砂超细助磨研究[J]. 矿产保护与利用, 2018(5): 106-109, 150.

    Google Scholar

    [22] 郭高巍. 白云母超细粉体的制备及助磨机理的研究[D]. 西安: 西安建筑科技大学, 2015.

    Google Scholar

    [23] 吴一善, 温建康. 高岭土助磨工艺研究[J]. 非金属矿, 1993(3): 8-12.

    Google Scholar

    [24] 李冷, 曾宪滨. 石墨的粉碎机械力化学研究[J]. 武汉工业大学学报, 1996(1): 50-53. doi: 10.3321/j.issn:1671-4431.1996.01.015

    CrossRef Google Scholar

    [25] 单志伟, 李凤久, 刘立伟, 等. 超细粉磨活化河北某磷矿粉试验研究[J]. 矿产综合利用, 2020(2): 55-59.

    Google Scholar

    [26] XIAO YH, SHI-LL, FANG YC, et al. Variability of environmental factors and the effects on vegetation diversity with different restoration years in a large open-pit phosphorite mine. 2019, 127: 245-253.

    Google Scholar

    [27] 韩凤兰, 吴澜尔. 天然羟基磷灰石超细粉碎试验研究[J]. 矿产保护与利用, 2007(2): 17-19. doi: 10.3969/j.issn.1001-0076.2007.02.005

    CrossRef Google Scholar

    [28] 杨华明, 陈德良, 邱冠周. 超细粉碎机械化学的研究进展[J]. 中国粉体技术, 2002, 8(2): 32-37. doi: 10.3969/j.issn.1008-5548.2002.02.010

    CrossRef Google Scholar

    [29] 林胜. 我国超细粉碎设备的现状与展望[J]. 中国粉体技术, 2016, 22(2): 78-81, 85.

    Google Scholar

    [30] MINJIGMAA A, TEMUUJIN J, KHASBAATAR D, et al. Influence of mechanical distortion on the solubility of fluorapatite[J]. Minerals Engineering, 2006, 20(2): 194-196.

    Google Scholar

    [31] 张平, 孟磊, 石元亮. 不同类型磷矿石的机械活化效果研究[J]. 化工矿物与加工, 2014, 43(8): 13-15, 19.

    Google Scholar

    [32] MINJIGMAA A, OYUN-ERDENE G, ZOLZAYA T, et al. Phosphorus fertilizer prepared from natural burenkhaan phosphorite (mongolia) by a mechanical activation. [J] Geosystem Engineering 2016, 19(3): 119-124. doi: 10.1080/12269328.2015.1137501

    CrossRef Google Scholar

    [33] JARGALBAT P, BATDEMBEREL G, CHADRAABAL SH, et al. Crystal structure of mongolian phosphorite minerals and mechanochemistry[J]. Physical Chemistry, 2014, 4(2): 30-34.

    Google Scholar

    [34] 王晨, 高宏, 应媛芳, 等. 机械化学法活化磷矿的机理研究[J]. 硅酸盐通报, 2018, 37(12): 4007-4011.

    Google Scholar

    [35] 王晨, 高宏, 刘淑红, 等. 中低品位磷矿粉的机械力化学活化与活性表征[J]. 化工矿物与加工, 2012, 41(7): 1-4. doi: 10.3969/j.issn.1008-7524.2012.07.001

    CrossRef Google Scholar

    [36] 谢超, 吴三琴, 张泽朋, 等. 机械力化学法制备有机改性蒙脱石粉体[J]. 中国粉体技术, 2014, 20(1): 7-12. doi: 10.3969/j.issn.1008-5548.2014.01.002

    CrossRef Google Scholar

    [37] 魏静, 周恩湘, 张桂银, 等. 不同活化剂对磷矿粉的活化作用[J]. 河北农业大学学报, 2001(1): 13-15.

    Google Scholar

    [38] 孙逊, 孟磊, 石元亮. 磷矿粉机械活化有效性研究[J]. 吉林农业科学, 2014, 39(1): 47-50.

    Google Scholar

    [39] 林胜. 我国超细粉碎设备的现状与展望[J]. 中国粉体技术, 2016, 22(2): 78-81, 85.

    Google Scholar

    [40] 于大雪, 武敬杰. 秸秆超细粉碎设备现状及研究[J]. 吉林化工学院学报, 2019, 36(12): 60-62, 78.

    Google Scholar

    [41] 郑水林. 超细粉碎设备现状与发展趋势[J]. 中国非金属矿工业导刊, 2004(3): 3-6, 26.

    Google Scholar

    [42] 徐鹏金. 浅述石墨超细粉碎的研究现状[J]. 中国粉体工业, 2019(5): 19-24.

    Google Scholar

    [43] 张国旺, 黄圣生. 超细粉碎技术的应用和发展[J]. 矿业快报, 2002(1): 1-3.

    Google Scholar

    [44] 姚敏. 振动磨动态特性分析及变频控制研究[D]. 长春: 吉林大学, 2005.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1425) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint