Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

HE Yuhao, REN Zijie, HUANG Xiangyang, PENG Guohuang, WANG Zengzi, GAO Huimin. Radiation Protection Mechanism and Application of Barite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 41-46. doi: 10.13779/j.cnki.issn1001-0076.2020.06.006
Citation: HE Yuhao, REN Zijie, HUANG Xiangyang, PENG Guohuang, WANG Zengzi, GAO Huimin. Radiation Protection Mechanism and Application of Barite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 41-46. doi: 10.13779/j.cnki.issn1001-0076.2020.06.006

Radiation Protection Mechanism and Application of Barite

More Information
  • With the rapid development of nuclear technology in medical, military, electronic and other fields, the radioactive pollution and radiation damage caused by nuclear technology can not be ignored. In this paper, the principle and application of barite radiation protection were described in detail. Due to the large core element barium and high dielectric constant barium ion in barite, it can significantly reduce the ray penetration and weaken the electromagnetic wave. With the advantages of big resources reserves and low processing cost, it is a promising radiation protection material.

  • 加载中
  • [1] 吕宗鑫. 对电离辐射与电磁辐射区别的探讨[J]. 低碳世界, 2019(1): 22-23.

    Google Scholar

    [2] 唐振波, 干叶. 电磁辐射的污染与防护[J]. 资源节约与环保, 2019(4): 106. doi: 10.3969/j.issn.1673-2251.2019.04.091

    CrossRef Google Scholar

    [3] Erdem M, Baykara O, Dogru M, et al. A novel shielding material prepared from solid waste containing lead for Gamma ray[J]. Radiation Physics and Chemistry, 2010(9): 917-922.

    Google Scholar

    [4] 张兴祥, 段谨源, 于俊林, 等. 有机钡玻璃的研制与性能[J]. 塑料工业, 1994(2): 62.

    Google Scholar

    [5] Singh KJ, Singh N, Kaundal RS, et al. Gamma-Ray shielding and structural properties of PbO-SiO2 glasses[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Material And Atoms, 2008(6): 944-948.

    Google Scholar

    [6] 陈博, 姜志鹏, 罗青松, 等. 核辐射屏蔽材料的研究进展[J]. 西部皮革, 2016(20): 23-24. doi: 10.3969/j.issn.1671-1602.2016.20.019

    CrossRef Google Scholar

    [7] 赵义, 彭会清. 重晶石矿物的开发与应用研究进展[J]. 中国非金属矿工业导刊, 2015(6): 3-6. doi: 10.3969/j.issn.1007-9386.2015.06.002

    CrossRef Google Scholar

    [8] 张志程. 钡硅酸盐玻璃的设计与防辐射性能评价[D]. 成都: 成都理工大学, 2014.

    Google Scholar

    [9] 薛雯, 王福军, 王璐. X射线屏蔽材料设计与制备的研究进展[J]. 产业用纺织品, 2015(6): 1-5. doi: 10.3969/j.issn.1004-7093.2015.06.001

    CrossRef Google Scholar

    [10] 倪伟冬. 移动通信基站电磁辐射防护研究[D]. 杭州: 浙江工业大学, 2017.

    Google Scholar

    [11] 杜斌, 杨双合, 赵团, 等. 电磁辐射屏蔽材料的研究进展综述[J]. 科技信息, 2010(26): 418-419. doi: 10.3969/j.issn.1001-9960.2010.26.367

    CrossRef Google Scholar

    [12] 管登高, 王树根. 矿物材料对电磁波的吸收特性及其应用[J]. 矿产综合利用, 2006(5): 17-21. doi: 10.3969/j.issn.1000-6532.2006.05.005

    CrossRef Google Scholar

    [13] 顾琳燕, 高强, 唐虹. 防核服装及其研究进展[J]. 纺织报告, 2016(6): 29-33. doi: 10.3969/j.issn.1005-6289.2016.06.011

    CrossRef Google Scholar

    [14] 田键, 朱兵兵, 汪洋, 等. 防辐射水泥的现状及发展趋势[J]. 环境工程, 2014(7): 119-122.

    Google Scholar

    [15] 袁全平. 复合型电磁屏蔽功能纤维板的研究[D]. 南宁: 广西大学, 2012.

    Google Scholar

    [16] 张兴祥, 王学晨, 牛津津, 等. 防辐射有机玻璃板材的抗辐射性能[J]. 中国安全科学学报, 1997(4): 1-6.

    Google Scholar

    [17] 何登良, 董发勤, 邓跃全, 等. 复合防氡防辐射墙面腻子的研究[J]. 化工进展, 2005(8): 930-934. doi: 10.3321/j.issn:1000-6613.2005.08.024

    CrossRef Google Scholar

    [18] 徐鹏金. 浅述我国重晶石产业发展现状[J]. 中国粉体工业, 2019(4): 1-6.

    Google Scholar

    [19] 大千. 2016年全球重晶石产量和储量[J]. 化工矿产地质, 2017(1): 64.

    Google Scholar

    [20] 袁建国, 屈云燕, 柳霞丽, 等. 中国重晶石资源现状及供需形势[J]. 现代化工, 2017(6): 1-4.

    Google Scholar

    [21] 李胜荣, 许虹, 申俊峰, 等. 结晶学与矿物学[M]. 北京: 地质出版社, 2008.05.

    Google Scholar

    [22] 何勇, 李园丁. 毒重石制备碳酸钡工艺研究[J]. 无机盐工业, 1993(4): 11-13.

    Google Scholar

    [23] Akkurt I, El-Khayatt AM. The effect of barite proportion on neutron and gamma-ray shielding[J]. Annals of Nuclear Energy, 2013(51): 5-9.

    Google Scholar

    [24] 项长龙, 滕晓波, 贾清秀. 高能辐射防护纤维材料的研究进展[J]. 北京服装学院学报(自然科学版), 2020(1): 91-99.

    Google Scholar

    [25] 佘子盈. 重晶石防辐射混凝土设计及性能研究[J]. 混凝土, 2013(1): 156-158. doi: 10.3969/j.issn.1002-3550.2013.01.042

    CrossRef Google Scholar

    [26] 高育欣, 吴海泳, 林喜华, 等. 重晶石防辐射泵送混凝土的试验研究与工程应用[J]. 混凝土, 2011(10): 90-92.

    Google Scholar

    [27] 杨医博, 麦国文, 郭文瑛, 等. 散裂中子源工程防中子辐射重混凝土配合比研究[J]. 工业建筑, 2019(5): 103-108.

    Google Scholar

    [28] 刘津玮, 刘优昌. 纳米硫酸钡/再生纤维素共混纤维制备及性能研究[J]. 山东纺织科技, 2017(1): 5-8.

    Google Scholar

    [29] 马君志, 李昌垒. 防辐射粘胶短纤维的研制及性能分析[J]. 人造纤维, 2018(6): 2-7.

    Google Scholar

    [30] 杨华明, 胡岳华, 张慧慧. 重晶石基锑掺杂SnO2导电粉末用于导电涂料及其屏蔽特性[J]. 功能材料, 2006(9): 1433-1435.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2076) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint