Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 4
Article Contents

Xin WANG, Ying LEI, Rui LIU, Wen CHEN, Yu LI, Chao YONG, Zhenhong LIAO. Nucleation and Growth Mechanism of Iron Grains in Oolitic Hematite Reduced via Microwave Heating[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 46-51. doi: 10.13779/j.cnki.issn1001-0076.2020.04.007
Citation: Xin WANG, Ying LEI, Rui LIU, Wen CHEN, Yu LI, Chao YONG, Zhenhong LIAO. Nucleation and Growth Mechanism of Iron Grains in Oolitic Hematite Reduced via Microwave Heating[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 46-51. doi: 10.13779/j.cnki.issn1001-0076.2020.04.007

Nucleation and Growth Mechanism of Iron Grains in Oolitic Hematite Reduced via Microwave Heating

More Information
  • The nucleation and growth kinetics of iron grains in oolitic hematite coke-bearing pellets reduced by microwave heating were studied by Avrami-Erofeyev model. The phase composition, morphology and grain size, element composition and distribution of reduced sample were analyzed by XRD, SEM and EDX techniques. The results showed that the metallization rate was 77.6~92.6% at 1 173~1 473 K in 20 minutes. The nucleation and growth rate of iron grains in oolitic hematite coke-bearing pellets reduced at 1 173~1 473 K were found well-fitting to the selected model with the corresponding R2 coefficient ranges of 0.9411~0.9977 and 0.9484~0.9848, respectively. The kinetic parameters were obtained by fitting. The nucleation activation energy and growth activation energy were given as 51.21 kJ/mol and 18.05 kJ/mol, which indicated that the reduction process was controlled by iron grain nucleation rate. Compared with the conventional heating conducted by previous researchers, it could be found that the nucleation and growth rate of iron grains was faster in microwave field. The analysis of SEM showed that the morphologies of iron grains were spherical and partly vermicular, and the maximum single iron grain size in the field of view was about 10 micrometers.
  • 加载中
  • [1] 陈雯, 何文浩, 赵强, 等.微波强化鲕状赤铁矿还原脱磷机理研究[J].钢铁研究学报, 2020, 32(1):1039-1050.

    Google Scholar

    [2] 何文浩, 陈雯, 王鑫, 等.鲕状赤铁矿微波碳热还原-磁选提铁脱磷实验研究[J].矿冶工程, 2019, 39(5):92-94, 99.

    Google Scholar

    [3] 蒋曼, 王依帆, 张乐, 等.高磷鲕状赤铁矿煤基还原焙烧制备直接还原铁[J].山东理工大学学报(自然科学版), 2020, 4(3):1-4.

    Google Scholar

    [4] 吴世超, 孙体昌, 杨慧芬.国外某高磷鲕状赤铁矿直接还原-磁选降磷研究[J].金属矿山, 2019(11):109-114.

    Google Scholar

    [5] 李国峰, 高鹏, 韩跃新, 等.高磷鲕状赤铁矿深度还原过程中磷的迁移行为[J].金属矿山, 2017(2):43-47.

    Google Scholar

    [6] 韩跃新, 任多振, 孙永升, 等.高磷鲕状赤铁矿深度还原过程中磷的迁移规律[J].钢铁, 2013, 48(7):7-11.

    Google Scholar

    [7] 贾岩, 倪文, 郑斐, 等.鲕状赤铁矿深度还原过程中铁粒生长特征研究[J].金属矿山, 2010(10):52-56.

    Google Scholar

    [8] 唐海燕, 李京社, 孟文佳, 等.恩施高磷鲕状赤铁矿煤基直接还原的试验[J].钢铁, 2013, 48(8):9-13.

    Google Scholar

    [9] 郑孝英, 陈沪飞, 陈晋, 等.微波预处理对磁铁矿选矿效果的影响研究[J].矿冶, 2017, 26(6):1-4, 11.

    Google Scholar

    [10] 李康强, 李鑫培, 和飞, 等.低品位软锰矿还原技术研究进展[J].矿冶, 2019, 28(3):64-70, 88.

    Google Scholar

    [11] LEI Y, LI Y, CHEN W, et al. Microwave carbothermic reduction of oolitic hematite[J]. ISIJ International, 2017, 57(5): 791.

    Google Scholar

    [12] LEI Y, Li Y, Peng J H, et al. Carbothermic reduction of Panzhihua oxidized ilmenite in a microwave field[J]. ISIJ International, 2011, 51(3): 337. doi: 10.2355/isijinternational.51.337

    CrossRef Google Scholar

    [13] RAJAVARAM R, LEE J, OH J S, et al. Microwave heating characteristics of magnetite ore[J]. Metals and Materials International, 2016, 22(6):1116-1120. doi: 10.1007/s12540-016-6045-2

    CrossRef Google Scholar

    [14] VEERANJANEYULU R, SHREY A, NIKHIl D. Optimization of microwave carbothermal reduction for processing of banded hematite jasper ore[J]. Minerals Engineering, 2019, 138: 204-214. doi: 10.1016/j.mineng.2019.05.004

    CrossRef Google Scholar

    [15] HE Z, WANG S. Influence study on dephosphorization of carbon-containing high-phosphorus iron ore by microwave field [J]. Metalurgia International, 2012, 17(3): 64-66.

    Google Scholar

    [16] 余文华.微波加热在钒钛磁铁矿冶金领域应用的研究进展[J].钢铁钒钛, 2011, 32(3):87-96.

    Google Scholar

    [17] MA J, PICKLES C A. Microwave segregation process for nickeliferous silicate laterites[J]. Canadian Metallurgical Quarterly, 2003, 42(3): 313-326. doi: 10.1179/cmq.2003.42.3.313

    CrossRef Google Scholar

    [18] SUN Y S, HAN Y X, GAO P, et al. Growth kinetics of metallic iron phase in coal-based reduction of oolitic iron ore[J]. ISIJ International, 2016, 56(P):1697-1704.

    Google Scholar

    [19] 朱德庆, 肖永忠, 春铁军, 等.低品位赤铁矿直接还原过程中铁晶粒的长大行为[J].中国有色金属学报, 2013(11):234-239.

    Google Scholar

    [20] 梅贤恭, 袁明亮, 左文亮, 等.高铁赤泥煤基直接还原中铁晶粒成核及晶核长大动力学[J].中南工业大学学报, 1996 (2):159-163.

    Google Scholar

    [21] SAKAR S B, RAY H S. Nucleation and grain growth model for reduction of hematite to magnetite[J]. Trans[SI], 1988, 28: 1006-1010.

    Google Scholar

    [22] CHAIGNEAU R, HEEREMA R H. The influence of specific impurities on the nucleation and growth of magnetite during reduction of artificially prepared hematite[J]. Metallurgical Transactions B, 1991, 22(4): 503-511. doi: 10.1007/BF02654289

    CrossRef Google Scholar

    [23] 雷鹰, 李雨, 陈雯, 等.鄂西某鲕状赤铁矿石工艺矿物学研究[J].金属矿山, 2016(12):130-133.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1639) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint