[1] |
谢计平.矿山废弃地分析及生态环境修复技术研究进展[J].环境保护与循环经济, 2017(6):41-45.
Google Scholar
|
[2] |
王欣若.土壤污染修复方法研究进展[J].科技经济导刊, 2020, 28(16):94-95.
Google Scholar
|
[3] |
周文亮, 白俞.矿山生态环境修复方法探究[J].世界有色金属, 2019(21):220-221.
Google Scholar
|
[4] |
解坤梅, 何银忠.废弃矿区生态环境恢复林业复垦技术的探究[J].农村经济与科技, 2018(1):26-27.
Google Scholar
|
[5] |
苑兴伟, 刘文锋, 张义森, 等.黄金尾矿生态修复技术研究[J].农业科技与装备, 2020, 295(1):8-9.
Google Scholar
|
[6] |
王成龙, 王颖, 孔令东, 等.浅议我国矿山生态系统修复[J].采矿技术, 2020, 20(3):90-92.
Google Scholar
|
[7] |
朱琳.矿山生态修复技术方法研究[J].广州化工, 2011, 39(15):31-33.
Google Scholar
|
[8] |
周鸣, 汤红妍, 朱书法, 等.EDTA强化电动力学修复重金属复合污染土壤[J].环境工程学报, 2014, 8(3):1197-1202.
Google Scholar
|
[9] |
DENG C, ZHOU D, and CANG L. Electrokinetic treatment affected by EDTA and applied voltage drop for Cu mine tailings[J]. Journal of Agro-Environment Science, 2005, 24(1): 55-59.
Google Scholar
|
[10] |
张梁.我国矿山生态环境恢复治理现状和对策[J].中国国土资源经济, 2002, 15(4):25-27.
Google Scholar
|
[11] |
晏闻博, 柳丹, 彭丹莉, 等.重金属矿山生态治理与环境修复技术进展[J].浙江农林大学学报, 2015, 32(3):467-477.
Google Scholar
|
[12] |
CHENF, YAO Q, TIAN J. Review of ecological restoration technology for mine tailings in China[J]. Engineering Review, 2016, 36: 115-121.
Google Scholar
|
[13] |
FU W, WANG Y, YU Q, et al. Effect of different improvement measures on the reclamation effect of iron tailings[J]. Northern Horticulture, 2012, 8: 158-163.
Google Scholar
|
[14] |
樊霆, 叶文玲, 陈海燕, 等.农田土壤重金属污染状况及修复技术研究[J].生态环境学报, 2013(10):1727-1736.
Google Scholar
|
[15] |
蔡妙珍, 邢承华.土壤氧化铁的活化与环境意义[J].浙江师范大学学报(自然科学版), 2004, 27(3):279-282.
Google Scholar
|
[16] |
李九玉, 徐仁扣.柠檬酸存在下酸性土壤中铝溶解动力学的初步研究[J].生态环境学报, 2004, 13(4):641-642.
Google Scholar
|
[17] |
ZUPANC V, KASTELEC D, LESTAN D, et al. Soil physical characteristics after EDTA washing and amendment withinorganic and organic additives[J]. Environmental Pollution, 2014, 186: 56-62. doi: 10.1016/j.envpol.2013.11.027
CrossRef Google Scholar
|
[18] |
刘磊, 胡少平, 陈英旭, 等.淋洗法修复化工厂遗留地重金属污染土壤的可行性[J].应用生态学报, 2010, 21(6):1537-1541.
Google Scholar
|
[19] |
HU X and YUAN X. In-situ remediation of mine tailings soil contaminated by heavy metals in Tongling city[J]. Resources and Environment in the Yangtze Basin, 2011, 20(11): 1378-1382.
Google Scholar
|
[20] |
LI Z, XIONG J, MA Q, YAN M, and ZOU F. Effects of organic manure and lime on growth and heavy metals accumulation in Alfalfa grown in soil polluted by lead/zinc mine tailings[J]. Guangxi Agricultural Sciences, 2009, 40: 1187-1191.
Google Scholar
|
[21] |
黄细花, 卫泽斌, 郭晓方, 等.套种和化学淋洗联合技术修复重金属污染土壤[J].环境科学, 2010, 31(12):3067-3074.
Google Scholar
|
[22] |
谢伟强, 李小明, 陈灿, 等.土壤中铅锌的稳定化处理及机制研究[J].环境科学, 2015, 36(12):4609-4614.
Google Scholar
|
[23] |
林维晟, 吴海泉, 胡家朋, 等.生物酶生态修复重金属污染土壤[J].环境工程学报, 2015, 9(12):6147-6153.
Google Scholar
|
[24] |
XENIDIS A, STOURAITI C, PAPASSIOPI N.Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010, 177(123): 929-937.
Google Scholar
|
[25] |
GUO G, YANG J, CHEN T, et al. Concentrations and variation of organic matter and nutrients in municipal sludge of China[J]. China Water & Wastewater, 2009, 13(25): 120-121.
Google Scholar
|
[26] |
WU Z, GU S, and LI H. Research on the remediation with sewage sludge for the heavy metal contamination in Pb-Zn mining areas[J]. Safety and Environmental Engineering, 2012, 4(19): 49-58.
Google Scholar
|
[27] |
LI Z, PENG A, and QU L. Effects of microbial remediation inocula on microbial community in gold-tailings soil with secondary tillage[J]. Hunan Agricultural Sciences, 2009, 5: 46-49.
Google Scholar
|
[28] |
李华娟.吉林省典型煤矿区废弃地土壤重金属污染评价及豆科植物修复效应研究[D].长春: 吉林大学, 2014.
Google Scholar
|
[29] |
NORMAND P, NOUINOUI I, PUJIC P, et al. Frankia canadensis sp. nov. isolated from root nodules of Alnusincana subspecies rugosa[J]. International journal of systematic and evolutionary microbiology, 2018, 68(9): 3001-3011. doi: 10.1099/ijsem.0.002939
CrossRef Google Scholar
|
[30] |
ISSAH G, KIMARO A, KORT J, et al. Quantifying biological nitrogen fixation of agroforestry shrub species using 15N dilution techniques under greenhouse conditions[J]. Agroforestry Systems, 2014, 88(4): 607-617. doi: 10.1007/s10457-014-9706-5
CrossRef Google Scholar
|
[31] |
韩煜, 全占军, 王琦, 等.金属矿山废弃地生态修复技术研究[J].环境保护科学, 2016, 42(2):108-113, 128.
Google Scholar
|
[32] |
WU Y, CHEN C, WANG G, XIONG B, ZHOU W, XUE F, QI W, QIU C, LIU Z, Mechanism underlying earthworm on the remediation of cadmium-contaminated soil[J]. Science of the Total Environment, 2020, 728: 138904.
Google Scholar
|
[33] |
徐池.重金属Cu对蚯蚓的驯化研究[D].南京: 南京农业大学, 2012.
Google Scholar
|
[34] |
ANGST G, FROUZ J, et al. Preferential degradation of leaf-vs. root-derived organic carbon in earthworm-affected soil[J]. Geoderma, 2020, 372: 114391.
Google Scholar
|
[35] |
钱春香, 王明明, 许燕波.土壤重金属污染现状及微生物修复技术研究进展[J].东南大学学报(自然科学版), 2013, 43(3):669-674.
Google Scholar
|
[36] |
张杰, 龙琦, 李彦成, 等.酸性矿山废水与选矿废水协同生化处理研究[J].水处理技术, 2020, 46(7):94-98, 102.
Google Scholar
|
[37] |
MASSON-BOIVIN C, SACHS J L. Symbiotic nitrogen fixation by rhizobia-the roots of a success story[J]. Current Opinion in Plant Biology, 2018, 44: 7-15. doi: 10.1016/j.pbi.2017.12.001
CrossRef Google Scholar
|
[38] |
熊张东.重金属污染土壤的微生物原位修复技术研究进展[J].世界有色金属, 2019(9):269-270.
Google Scholar
|
[39] |
XIONG W, YIN C, WANG Y, et al. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17 beta-estradiol-oxidizing dehydrogenases[J]. Journal of Hazardous Materials, 2020, 385: 121616. doi: 10.1016/j.jhazmat.2019.121616
CrossRef Google Scholar
|
[40] |
丁竹红, 胡忻, 尹大强.螯合剂在重金属污染土壤修复中应用研究进展[J].生态环境学报, 2009, 18(2):777-782.
Google Scholar
|
[41] |
WU Y, MA L, LIU Q, et al. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 395: 122661. doi: 10.1016/j.jhazmat.2020.122661
CrossRef Google Scholar
|