Citation: | ZHANG Wei, SHAO Ming-juan, YAO Shu-qing. LONG-TERM ONSHORE PRODUCTION TEST OF NATURAL GAS HYDRATE IN ALASKA, US: Progress and enlightenment for China[J]. Geology and Resources, 2024, 33(5): 680-689. doi: 10.13686/j.cnki.dzyzy.2024.05.008 |
With the continuous deepening of natural gas hydrate exploration and production test, the industrialization of hydrate development meets a bottleneck for the scientific theoretical research and technical equipment development in major countries of the world. At present, only a few countries such as China, Japan and the United States are still actively promoting long-term hydrate production test to break the bottleneck. Since 2014, when Japan and the United States reached an intention to cooperate on a long-term onshore production test project in Alaska, the two countries have basically completed the preparatory work before the gas production test. Based on the summary of previous short- and medium-term hydrate production test projects and necessity of long-term production test, the paper focuses on the project team's selection of test sites, drilling of formation test wells as well as characterization of target reservoirs based on data acquisition. It is suggested that China may strengthen in-depth exchanges and cooperation with Russia in the fields related to hydrate exploration and development (especially long-term onshore production test) as the absence of suitable areas for long-term onshore production test. Although China has led the way in hydrate production test in terms of gas production duration, maximum daily gas production and cumulative gas production, the scientific theoretical research and key technical development should also be strengthened in the fields of drilling, well completion, artificial lift, geomechanics and sand controlling.
[1] | Dallimore S R, Collett T S. Summary and implications of the Mallik 2002 gas hydrate production research well program[C] //Dallimore S R, Collet T S. Scientific results from the Mallik 2002 Gas Hydrate Production Well Program. Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada Bulletin, 2005: 1-36. |
[2] | Wang Z Y, Zhang Y Y, Peng Z Y, et al. Recent advances in methods of gas recovery from hydrate-bearing sediments: A review[J]. Energy & Fuels, 2022, 36(11): 5550-5593. |
[3] | 张炜, 邵明娟, 姜重昕, 等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质, 2018, 38(5): 1-13. Zhang W, Shao M J, Jiang C X, et al. World progress of drilling and production test of natural gas hydrate[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 1-13. |
[4] | Sahu C, Kumar R, Sangwai J S. A comprehensive review on well completion operations and artificial lift techniques for methane gas production from natural gas hydrate reservoirs[J]. Energy & Fuels, 2021, 35(15): 11740-11760. |
[5] | Yamamoto K, Boswell R, Collett T S, et al. Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing[J]. Energy & Fuels, 2022, 36(10): 5047-5062. |
[6] | Ouchi H, Yamamoto K, Akamine K, et al. Numerical history-matching of modeling and actual gas production behavior and causes of the discrepancy of the Nankai Trough gas-hydrate production test cases[J]. Energy & Fuels, 2022, 36(1): 210-226. |
[7] | Yamamoto K, Kanno T, Wang X X, et al. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advances, 2017, 7(10): 5554-5577. doi: 10.1039/C6RA26487E |
[8] | Yamamoto K, Kanno T, Ouchi H, et al. Comparison of the vertical gas-hydrate production profile with the simulation results obtained using geophysical log-based reservoir characteristics and reasons for their discrepancies in the Nankai Trough[J]. Energy & Fuels, 2021, 35(24): 20026-20036. |
[9] |
MH21-S研究开发コンソ一シアム. 地下で何が起こっていたのか? 计测とモデルの组み合わせから见えること[EB/OL]. (2020-12-16) [2023-06-05]. |
[10] |
MH21-S研究开发コンソ一シアム. アラスカ陆上产出试验では何をするのか?[EB/OL]. (2022-12-07)[2023-06-05]. |
[11] | Boswell R, Collett T S, Yamamoto K, et al. Scientific results of the Hydrate-01 stratigraphic test well program, western Prudhoe Bay unit, Alaska North Slope[J]. Energy & Fuels, 2022, 36(10): 5167-5184. |
[12] | Collett T S, Boswell R, Lee M W, et al. Evaluation of long-term gas-hydrate-production testing locations on the Alaska North Slope[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(2): 243-264. |
[13] | Collett T S, Lewis K A, Zyrianova M V, et al. Assessment of undiscovered gas hydrate resources in the North Slope of Alaska, 2018[R]. Reston: U.S. Geological Survey, 2019: 1-4. |
[14] | Boswell R, Schoderbek D, Collett T S, et al. The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J]. Energy & Fuels, 2017, 31(1): 140-153. |
[15] | Okinaka N, Boswell R, Collett T S, et al. Progress toward the establishment of an extended-duration gas hydrate reservoir response test on the Alaska North Slope[C] //Proceedings of the 10th International Conference on Gas Hydrates (ICGH10). Singapore, 2020. |
[16] | Collett T S, Zyrianova M V, Okinaka N, et al. Planning and operations of the Hydrate 01 stratigraphic test well, Prudhoe Bay unit, Alaska North Slope[J]. Energy & Fuels, 2022, 36(6): 3016-3039. |
[17] | Young C, Shragge J, Schultz W, et al. Advanced distributed acoustic sensing vertical seismic profile imaging of an Alaska North Slope gas hydrate field[J]. Energy & Fuels, 2022, 36(7): 3481-3495. |
[18] |
U.S. Department of Energy. U.S. Department of Energy and partners to test gas hydrates reservoir response on Alaska North Slope[EB/OL]. (2022-08-30)[2023-06-05]. |
[19] |
独立行政法人エネルギ一·金属矿物资源机构. 令和3年度石油天然ガス开发技术本部年报[EB/OL]. [2023-06-05]. |
[20] | Hunter R B, Collett T S, Boswell R, et al. Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope: Overview of scientific and technical program[J]. Marine and Petroleum Geology, 2011, 28(2): 295-310. doi: 10.1016/j.marpetgeo.2010.02.015 |
[21] | Farrell H, Boswell R, Howard J, et al. CO2-CH4 exchange in natural gas hydrate reservoirs: Potential and challenges[J]. Fire-In-The-Ice, 2010, 10(1): 19-21. |
[22] | Haines S S, Collett T S, Yoneda J, et al. Gas hydrate saturation estimates, gas hydrate occurrence, and reservoir characteristics based on well log data from the Hydrate-01 stratigraphic test well, Alaska North Slope[J]. Energy & Fuels, 2022, 36(6): 3040-3050. |
[23] | Yoneda J, Jin Y, Muraoka M, et al. Multiple physical properties of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 stratigraphic test well[J]. Marine and Petroleum Geology, 2021, 123: 104748. doi: 10.1016/j.marpetgeo.2020.104748 |
[24] | Tamaki M, Fujimoto A, Boswell R, et al. Geological reservoir characterization of a gas hydrate prospect associated with the Hydrate-01 stratigraphic test well, Alaska North Slope[J]. Energy & Fuels, 2022, 36(15): 8128-8149. |
[25] | Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 279-294. |
[26] | Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska[J]. AAPG Bulletin, 1993, 77(5): 793-812. |
[27] | Collett T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992. |
[28] | Boswell R, Rose K, Collett T S, et al. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope [J]. Marine and Petroleum Geology, 2011, 28(2): 589-607. |
[29] | Lewis K A, Collett T S. Brookian sequence well log correlation sections and occurrence of gas hydrates, north-central North Slope, Alaska[R]. Reston: U.S. Geological Survey, 2013: 1-23. |
[30] | Myshakin E, Garapati N, Seol Y, et al. Numerical simulations of depressurization-induced gas hydrate reservoir (B1 Sand) response at the Prudhoe Bay unit Kuparuk 7-11-12 pad on the Alaska North Slope[J]. Energy & Fuels, 2022, 36(5): 2542-2560. |
[31] | Yoneda J, Suzuki K, Jin Y, et al. Permeability measurement and prediction with nuclear magnetic resonance analysis of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 stratigraphic test well[J]. Energy & Fuels, 2022, 36(5): 2515-2529. |
[32] | Konno Y, Yoneda J, Egawa K, et al. Permeability of sediment cores from methane hydrate deposit in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 487-495. |
[33] | Larsen P H. Relay structures in a Lower Permian basement-involved extension system, East Greenland[J]. Journal of Structural Geology, 1988, 10(1): 3-8. |
[34] | Peacock D C P, Parfitt E A. Active relay ramps and normal fault propagation on Kilauea Volcano, Hawaii[J]. Journal of Structural Geology, 2002, 24(4): 729-742. |
[35] | Fossen H, Rotevatn A. Fault linkage and relay structures in extensional settings: A review[J]. Earth-Science Reviews, 2016, 154: 14-28. |
[36] | Kuuskraa V A. А decade of progress in unconventional gas[J]. OJG Unconventional Gas Article, 2007, 1: 1-10. |
[37] | Перлова Е В. Коммерчески значимые нетрадиционные источники газа-мировой опыт освоения и перспективы для России[J]. Территория Нефтегаз, 2010, 11: 46-51. (in Russian) |
[38] | Перлова Е В, Леонов С А, Хабибуллин Д Я. Приоритетные направления освоения газогидратных залежей России[J]. Вести Газовой Науки, 2017, 3(31): 224-229. (in Russian) |
[39] | Медведева О Е, Макар С В. Перспективность освоения нетрадиционных ресурсов газа в мире и россии[J]. Научный Вестник ЮИМ, 2018, 1: 49-51. (in Russian) |
[40] | 邵明娟, 张炜, 吴西顺, 等. 麦索亚哈气田天然气水合物的开发[J]. 国土资源情报, 2016(12): 17-19, 31. Shao M J, Zhang W, Wu X S, et al. Natural gas hydrate exploitation at Messoyakha gas field[J]. Land and Resources Information, 2016(12): 17-19, 31. |
[41] | Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[42] | Ye J L, Qin X W, Xie W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. |
[43] | Sahu C, Kumar R, Sangwai J S. Comprehensive review on exploration and drilling techniques for natural gas hydrate reservoirs[J]. Energy & Fuels, 2020, 34(10): 11813-11839. |
[44] | 朱慧星. 天然气水合物开采储层出砂过程及对产气影响的数值模型研究[D]. 长春: 吉林大学, 2021. Zhu H X. Numerical study on sand production processes during natural gas hydrate recovery and its impact on gas production[D]. Changchun: Jilin University, 2021. |
[45] | 李彦龙. 南海目标区块天然气水合物开发井控砂介质堵塞模拟与控砂参数优化研究[D]. 武汉: 中国地质大学(武汉), 2021. Li Y L. Study on clogging of sand-control media and sand-control optimization for natural gas hydrate production wells in the South China Sea[D]. Wuhan: China University of Geosciences, 2021. |
[46] | 宁伏龙, 方翔宇, 李彦龙, 等. 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技通报, 2020, 39(1): 137-148. Ning F L, Fang X Y, Li Y L, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 137-148. |
Wellbore configuration sketches of PTW-1 and PTW-2 production wells (From Reference [19])
Location of Hydrate-01 well in the Prudhoe Bay unit and testing wells in other areas (From Reference [17])
Stratigraphic column of Kuparuk 7-11-12 pad at the production test site and gamma-ray logging profile (From Reference [24])
Profiles of sandstone layer through Kuparuk 7-11-12 and Hydrate-01 wells (From Reference [24])