2024 Vol. 33, No. 5
Article Contents

ZHANG Wei, SHAO Ming-juan, YAO Shu-qing. LONG-TERM ONSHORE PRODUCTION TEST OF NATURAL GAS HYDRATE IN ALASKA, US: Progress and enlightenment for China[J]. Geology and Resources, 2024, 33(5): 680-689. doi: 10.13686/j.cnki.dzyzy.2024.05.008
Citation: ZHANG Wei, SHAO Ming-juan, YAO Shu-qing. LONG-TERM ONSHORE PRODUCTION TEST OF NATURAL GAS HYDRATE IN ALASKA, US: Progress and enlightenment for China[J]. Geology and Resources, 2024, 33(5): 680-689. doi: 10.13686/j.cnki.dzyzy.2024.05.008

LONG-TERM ONSHORE PRODUCTION TEST OF NATURAL GAS HYDRATE IN ALASKA, US: Progress and enlightenment for China

  • With the continuous deepening of natural gas hydrate exploration and production test, the industrialization of hydrate development meets a bottleneck for the scientific theoretical research and technical equipment development in major countries of the world. At present, only a few countries such as China, Japan and the United States are still actively promoting long-term hydrate production test to break the bottleneck. Since 2014, when Japan and the United States reached an intention to cooperate on a long-term onshore production test project in Alaska, the two countries have basically completed the preparatory work before the gas production test. Based on the summary of previous short- and medium-term hydrate production test projects and necessity of long-term production test, the paper focuses on the project team's selection of test sites, drilling of formation test wells as well as characterization of target reservoirs based on data acquisition. It is suggested that China may strengthen in-depth exchanges and cooperation with Russia in the fields related to hydrate exploration and development (especially long-term onshore production test) as the absence of suitable areas for long-term onshore production test. Although China has led the way in hydrate production test in terms of gas production duration, maximum daily gas production and cumulative gas production, the scientific theoretical research and key technical development should also be strengthened in the fields of drilling, well completion, artificial lift, geomechanics and sand controlling.

  • 加载中
  • [1] Dallimore S R, Collett T S. Summary and implications of the Mallik 2002 gas hydrate production research well program[C] //Dallimore S R, Collet T S. Scientific results from the Mallik 2002 Gas Hydrate Production Well Program. Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada Bulletin, 2005: 1-36.

    Google Scholar

    [2] Wang Z Y, Zhang Y Y, Peng Z Y, et al. Recent advances in methods of gas recovery from hydrate-bearing sediments: A review[J]. Energy & Fuels, 2022, 36(11): 5550-5593.

    Google Scholar

    [3] 张炜, 邵明娟, 姜重昕, 等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质, 2018, 38(5): 1-13.

    Google Scholar

    Zhang W, Shao M J, Jiang C X, et al. World progress of drilling and production test of natural gas hydrate[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 1-13.

    Google Scholar

    [4] Sahu C, Kumar R, Sangwai J S. A comprehensive review on well completion operations and artificial lift techniques for methane gas production from natural gas hydrate reservoirs[J]. Energy & Fuels, 2021, 35(15): 11740-11760.

    Google Scholar

    [5] Yamamoto K, Boswell R, Collett T S, et al. Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing[J]. Energy & Fuels, 2022, 36(10): 5047-5062.

    Google Scholar

    [6] Ouchi H, Yamamoto K, Akamine K, et al. Numerical history-matching of modeling and actual gas production behavior and causes of the discrepancy of the Nankai Trough gas-hydrate production test cases[J]. Energy & Fuels, 2022, 36(1): 210-226.

    Google Scholar

    [7] Yamamoto K, Kanno T, Wang X X, et al. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advances, 2017, 7(10): 5554-5577. doi: 10.1039/C6RA26487E

    CrossRef Google Scholar

    [8] Yamamoto K, Kanno T, Ouchi H, et al. Comparison of the vertical gas-hydrate production profile with the simulation results obtained using geophysical log-based reservoir characteristics and reasons for their discrepancies in the Nankai Trough[J]. Energy & Fuels, 2021, 35(24): 20026-20036.

    Google Scholar

    [9] MH21-S研究开发コンソ一シアム. 地下で何が起こっていたのか? 计测とモデルの组み合わせから见えること[EB/OL]. (2020-12-16) [2023-06-05]. https://www.mh21japan.gr.jp/pdf/mh21form2020/doc02.pdf. (in Japanese)

    Google Scholar

    [10] MH21-S研究开发コンソ一シアム. アラスカ陆上产出试验では何をするのか?[EB/OL]. (2022-12-07)[2023-06-05]. https://www.mh21japan.gr.jp/pdf/mh21form2022/doc03.pdf?d=20211221. (in Japanese)

    Google Scholar

    [11] Boswell R, Collett T S, Yamamoto K, et al. Scientific results of the Hydrate-01 stratigraphic test well program, western Prudhoe Bay unit, Alaska North Slope[J]. Energy & Fuels, 2022, 36(10): 5167-5184.

    Google Scholar

    [12] Collett T S, Boswell R, Lee M W, et al. Evaluation of long-term gas-hydrate-production testing locations on the Alaska North Slope[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(2): 243-264.

    Google Scholar

    [13] Collett T S, Lewis K A, Zyrianova M V, et al. Assessment of undiscovered gas hydrate resources in the North Slope of Alaska, 2018[R]. Reston: U.S. Geological Survey, 2019: 1-4.

    Google Scholar

    [14] Boswell R, Schoderbek D, Collett T S, et al. The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J]. Energy & Fuels, 2017, 31(1): 140-153.

    Google Scholar

    [15] Okinaka N, Boswell R, Collett T S, et al. Progress toward the establishment of an extended-duration gas hydrate reservoir response test on the Alaska North Slope[C] //Proceedings of the 10th International Conference on Gas Hydrates (ICGH10). Singapore, 2020.

    Google Scholar

    [16] Collett T S, Zyrianova M V, Okinaka N, et al. Planning and operations of the Hydrate 01 stratigraphic test well, Prudhoe Bay unit, Alaska North Slope[J]. Energy & Fuels, 2022, 36(6): 3016-3039.

    Google Scholar

    [17] Young C, Shragge J, Schultz W, et al. Advanced distributed acoustic sensing vertical seismic profile imaging of an Alaska North Slope gas hydrate field[J]. Energy & Fuels, 2022, 36(7): 3481-3495.

    Google Scholar

    [18] U.S. Department of Energy. U.S. Department of Energy and partners to test gas hydrates reservoir response on Alaska North Slope[EB/OL]. (2022-08-30)[2023-06-05]. https://www.energy.gov/fecm/articles/us-department-energy-and-partners-test-gas-hydrates-reservoir-response-alaska-north.

    Google Scholar

    [19] 独立行政法人エネルギ一·金属矿物资源机构. 令和3年度石油天然ガス开发技术本部年报[EB/OL]. [2023-06-05]. https://www.jogmec.go.jp/content/300386150.pdf. (in Japanese)

    Google Scholar

    [20] Hunter R B, Collett T S, Boswell R, et al. Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope: Overview of scientific and technical program[J]. Marine and Petroleum Geology, 2011, 28(2): 295-310. doi: 10.1016/j.marpetgeo.2010.02.015

    CrossRef Google Scholar

    [21] Farrell H, Boswell R, Howard J, et al. CO2-CH4 exchange in natural gas hydrate reservoirs: Potential and challenges[J]. Fire-In-The-Ice, 2010, 10(1): 19-21.

    Google Scholar

    [22] Haines S S, Collett T S, Yoneda J, et al. Gas hydrate saturation estimates, gas hydrate occurrence, and reservoir characteristics based on well log data from the Hydrate-01 stratigraphic test well, Alaska North Slope[J]. Energy & Fuels, 2022, 36(6): 3040-3050.

    Google Scholar

    [23] Yoneda J, Jin Y, Muraoka M, et al. Multiple physical properties of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 stratigraphic test well[J]. Marine and Petroleum Geology, 2021, 123: 104748. doi: 10.1016/j.marpetgeo.2020.104748

    CrossRef Google Scholar

    [24] Tamaki M, Fujimoto A, Boswell R, et al. Geological reservoir characterization of a gas hydrate prospect associated with the Hydrate-01 stratigraphic test well, Alaska North Slope[J]. Energy & Fuels, 2022, 36(15): 8128-8149.

    Google Scholar

    [25] Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 279-294.

    Google Scholar

    [26] Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska[J]. AAPG Bulletin, 1993, 77(5): 793-812.

    Google Scholar

    [27] Collett T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992.

    Google Scholar

    [28] Boswell R, Rose K, Collett T S, et al. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope [J]. Marine and Petroleum Geology, 2011, 28(2): 589-607.

    Google Scholar

    [29] Lewis K A, Collett T S. Brookian sequence well log correlation sections and occurrence of gas hydrates, north-central North Slope, Alaska[R]. Reston: U.S. Geological Survey, 2013: 1-23.

    Google Scholar

    [30] Myshakin E, Garapati N, Seol Y, et al. Numerical simulations of depressurization-induced gas hydrate reservoir (B1 Sand) response at the Prudhoe Bay unit Kuparuk 7-11-12 pad on the Alaska North Slope[J]. Energy & Fuels, 2022, 36(5): 2542-2560.

    Google Scholar

    [31] Yoneda J, Suzuki K, Jin Y, et al. Permeability measurement and prediction with nuclear magnetic resonance analysis of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 stratigraphic test well[J]. Energy & Fuels, 2022, 36(5): 2515-2529.

    Google Scholar

    [32] Konno Y, Yoneda J, Egawa K, et al. Permeability of sediment cores from methane hydrate deposit in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 487-495.

    Google Scholar

    [33] Larsen P H. Relay structures in a Lower Permian basement-involved extension system, East Greenland[J]. Journal of Structural Geology, 1988, 10(1): 3-8.

    Google Scholar

    [34] Peacock D C P, Parfitt E A. Active relay ramps and normal fault propagation on Kilauea Volcano, Hawaii[J]. Journal of Structural Geology, 2002, 24(4): 729-742.

    Google Scholar

    [35] Fossen H, Rotevatn A. Fault linkage and relay structures in extensional settings: A review[J]. Earth-Science Reviews, 2016, 154: 14-28.

    Google Scholar

    [36] Kuuskraa V A. А decade of progress in unconventional gas[J]. OJG Unconventional Gas Article, 2007, 1: 1-10.

    Google Scholar

    [37] Перлова Е В. Коммерчески значимые нетрадиционные источники газа-мировой опыт освоения и перспективы для России[J]. Территория Нефтегаз, 2010, 11: 46-51. (in Russian)

    Google Scholar

    [38] Перлова Е В, Леонов С А, Хабибуллин Д Я. Приоритетные направления освоения газогидратных залежей России[J]. Вести Газовой Науки, 2017, 3(31): 224-229. (in Russian)

    Google Scholar

    [39] Медведева О Е, Макар С В. Перспективность освоения нетрадиционных ресурсов газа в мире и россии[J]. Научный Вестник ЮИМ, 2018, 1: 49-51. (in Russian)

    Google Scholar

    [40] 邵明娟, 张炜, 吴西顺, 等. 麦索亚哈气田天然气水合物的开发[J]. 国土资源情报, 2016(12): 17-19, 31.

    Google Scholar

    Shao M J, Zhang W, Wu X S, et al. Natural gas hydrate exploitation at Messoyakha gas field[J]. Land and Resources Information, 2016(12): 17-19, 31.

    Google Scholar

    [41] Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.

    Google Scholar

    [42] Ye J L, Qin X W, Xie W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209.

    Google Scholar

    [43] Sahu C, Kumar R, Sangwai J S. Comprehensive review on exploration and drilling techniques for natural gas hydrate reservoirs[J]. Energy & Fuels, 2020, 34(10): 11813-11839.

    Google Scholar

    [44] 朱慧星. 天然气水合物开采储层出砂过程及对产气影响的数值模型研究[D]. 长春: 吉林大学, 2021.

    Google Scholar

    Zhu H X. Numerical study on sand production processes during natural gas hydrate recovery and its impact on gas production[D]. Changchun: Jilin University, 2021.

    Google Scholar

    [45] 李彦龙. 南海目标区块天然气水合物开发井控砂介质堵塞模拟与控砂参数优化研究[D]. 武汉: 中国地质大学(武汉), 2021.

    Google Scholar

    Li Y L. Study on clogging of sand-control media and sand-control optimization for natural gas hydrate production wells in the South China Sea[D]. Wuhan: China University of Geosciences, 2021.

    Google Scholar

    [46] 宁伏龙, 方翔宇, 李彦龙, 等. 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技通报, 2020, 39(1): 137-148.

    Google Scholar

    Ning F L, Fang X Y, Li Y L, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 137-148.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(123) PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint