2024 Vol. 33, No. 5
Article Contents

SUN Yan-ling, GAO Bo, TONG Zhi-qiang, WANG Jian-wei, GU Ma-jun, WANG Zhen, LIU Qi-ming. EXPERIMENTAL STUDY OF SLIPPAGE EFFECTS AND KNUDSEN DIFFUSION IN SHALE NANOPORES[J]. Geology and Resources, 2024, 33(5): 671-679. doi: 10.13686/j.cnki.dzyzy.2024.05.007
Citation: SUN Yan-ling, GAO Bo, TONG Zhi-qiang, WANG Jian-wei, GU Ma-jun, WANG Zhen, LIU Qi-ming. EXPERIMENTAL STUDY OF SLIPPAGE EFFECTS AND KNUDSEN DIFFUSION IN SHALE NANOPORES[J]. Geology and Resources, 2024, 33(5): 671-679. doi: 10.13686/j.cnki.dzyzy.2024.05.007

EXPERIMENTAL STUDY OF SLIPPAGE EFFECTS AND KNUDSEN DIFFUSION IN SHALE NANOPORES

More Information
  • In addition to Darcy flow, slippage effect and Knudsen diffusion are also the main flow modes of shale gas in nanopores. It is necessary to find out their characteristics, changing trend and influencing factors for shale gas exploitation. In this study, five Carboniferous shale samples are collected from the eastern Qaidam Basin to test the physical and chemical properties such as TOC, Ro, pore size and mineral compositions. The experiment is designed on the basis of Darcy principle. Combined with mass flux model and apparent permeability formula, the permeability contribution values, distribution coefficients and the trend of mass flux with pressure of Darcy flow, slippage effect and Knudsen diffusion are obtained to analyze the effects of such physicochemical properties. The results show that the permeability contribution value of slippage effect is the largest when the pressure is small, and then gradually decreases, with a little change in mass flux. The proportion of Knudsen diffusion is small and decreases with the increase of pressure. The permeability contribution value of Darcy flow remains unchanged, while the proportion and mass flux increase. The TOC and Ro have great effect on shale gas flow in real formation, and mineral content and pore size have direct influence on seepage.

  • 加载中
  • [1] Javadpour F, Farshi M M, Amrein M. Atomic-force microscopy: A new tool for gas-shale characterization[J]. Journal of Canadian Petroleum Technology, 2012, 51(4): 236-243. doi: 10.2118/161015-PA

    CrossRef Google Scholar

    [2] Beskok A, Karniadakis G E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3(1): 43-77. doi: 10.1080/108939599199864

    CrossRef Google Scholar

    [3] Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.

    Google Scholar

    [4] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. doi: 10.2118/09-08-16-DA

    CrossRef Google Scholar

    [5] 杨泽皓, 宫厚健, 李亚军, 等. 页岩中气体流动规律数值模拟研究[J]. 中国科技论文, 2016, 11(5): 527-532. doi: 10.3969/j.issn.2095-2783.2016.05.011

    CrossRef Google Scholar

    Yang Z H, Gong H J, Li Y J, et al. Numerical simulation study for gas transport in shale[J]. China Sciencepaper, 2016, 11(5): 527-532. doi: 10.3969/j.issn.2095-2783.2016.05.011

    CrossRef Google Scholar

    [6] 张欣, 刘吉余, 侯鹏飞. 中国页岩油的形成和分布理论综述[J]. 地质与资源, 2019, 28(2): 165-170.

    Google Scholar

    Zhang X, Liu J Y, Hou P F. A review on the formation and distribution theories of the shale oil in China[J]. Geology and Resources, 2019, 28(2): 165-170.

    Google Scholar

    [7] 李军亮, 柳忠泉, 肖永军, 等. 柴达木盆地东部地区石炭系泥页岩生烃条件及选区[J]. 地质通报, 2016, 35(2/3): 312-320.

    Google Scholar

    Li J L, Liu Z Q, Xiao Y J, et al. Shale gas formation conditions and potential area selection in Carboniferous strata in eastern Qaidam Basin[J]. Geological Bulletin of China, 2016, 35(2/3): 312-320.

    Google Scholar

    [8] Yue X A, Wei H G, Zhang L J, et al. Low pressure gas percolation characteristic in ultra-low permeability porous media[J]. Transport in Porous Media, 2010, 85(1): 333-345. doi: 10.1007/s11242-010-9565-0

    CrossRef Google Scholar

    [9] 张晓. 致密气藏气体克努森扩散特征[J]. 非常规油气, 2019, 6(6): 80-82, 88.

    Google Scholar

    Zhang X. Characteristics of Knudsen diffusion in tight gas reservoirs[J]. Unconventional Oil &Gas, 2019, 6(6): 80-82, 88.

    Google Scholar

    [10] 宋付权, 刘禹, 王常斌. 微纳米尺度下页岩气的质量流量特征分析[J]. 水动力学研究与进展, 2014, 29(2): 150-156.

    Google Scholar

    Song F Q, Liu Y, Wang C B. Analysis of the mass flow rate characteristics of the shale gas in micro/nano scale[J]. Chinese Journal of Hydrodynamics, 2014, 29(2): 150-156.

    Google Scholar

    [11] Deng J, Zhu W Y, Ma Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well[J]. Fuel, 2014, 124: 232-240.

    Google Scholar

    [12] Klinkenberg L J. The permeability of porous media to liquids and gases[J]. API Drilling and Production Practice, 1941 (2): 200-213.

    Google Scholar

    [13] Brown G P, DiNardo A, Cheng G K, et al. The flow of gases in pipes at low pressures[J]. Journal of Applied Physics, 1946, 17(10): 802-813.

    Google Scholar

    [14] Roy S, Raju R, Chuang H F, et al. Modeling gas flow through microchannels and nanopores[J]. Journal of Applied Physics, 2003, 93(8): 4870-4879.

    Google Scholar

    [15] Wei M Q, Duan Y G, Fang Q T, et al. Mechanism model for shale gas transport considering diffusion, adsorption/desorption and Darcy flow[J]. Journal of Central South University, 2013, 20(7): 1928-1937.

    Google Scholar

    [16] 徐德敏, 黄润秋, 邓英尔, 等. 低渗透软弱岩非达西渗流拟启动压力梯度试验研究[J]. 水文地质工程地质, 2008, 35(3): 57-60.

    Google Scholar

    Xu D M, Huang R Q, Deng Y E, et al. Non-Darcy flow quasi-threshold pressure gradient experimental study for low permeability soft rock[J]. Hydrogeology and Engineering Geology, 2008, 35(3): 57-60.

    Google Scholar

    [17] Civan F, Rai C S S, Sondergeld C H H. Determining shale permeability to gas by simultaneous analysis of various pressure tests[J]. SPE Journal, 2012, 17(3): 717-726.

    Google Scholar

    [18] 唐德中, 王永堂, 黄志军. 测定气体压缩因子的Burnett方法[J]. 中国科学技术大学学报, 1986, 16(3): 295-301.

    Google Scholar

    Tang D Z, Wang Y T, Huang Z J. Determination of gas gompressibilities by the Buruett method[J]. Journal of China University of Science and Technology, 1986, 16(3): 295-301.

    Google Scholar

    [19] 石蕾, 宗文明, 孙求实, 等. 泥页岩有机非均质性评价及其在烃源岩分级评价中的应用——以辽西拗陷中元古界蓟县系为例[J]. 地质与资源, 2022, 31(3): 367-374.

    Google Scholar

    Shi L, Zong W M, Sun Q S, et al. Shale organic heterogeneity evaluation method and its application in source rocks grading evaluation: A case study of Mesoproterozoic Jixianianin in Liaoxi Depression[J]. Geology and Resources, 2022, 31(3): 367-374.

    Google Scholar

    [20] Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.

    Google Scholar

    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21650.1—2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第1部分: 压汞法[S]. 北京: 中国标准出版社, 2008.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 21650.1—2008 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 1: Mercury porosimetry[S]. Beijing: Standards Press of China, 2008.

    Google Scholar

    [22] Wang F P, Reed R M, John A, et al. Pore networks and fluid flow in gas shales[C]//SPE Annual Technical Conference and Exhibition. New Orleans, USA: OnePetro, 2009.

    Google Scholar

    [23] Zhu W Y, Yue M, Ma D X, et al. The micro-structure and seepage characteristics of shale reservoir[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(1): 312-315.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(5)

Article Metrics

Article views(146) PDF downloads(155) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint