2024 Vol. 33, No. 5
Article Contents

XU Bo, TIAN Ye, WANG Mo, TANG Wen-tai, ZHAO Nan, LIU Chuang-chuang, SUI Ke-lin, HUO Wei-qi. HYDROCHEMISTRY AND GENESIS OF GROUNDWATER IN THE ALLUVIAL-PROLUVIAL FAN OF TAIZI RIVER[J]. Geology and Resources, 2024, 33(5): 690-700. doi: 10.13686/j.cnki.dzyzy.2024.05.009
Citation: XU Bo, TIAN Ye, WANG Mo, TANG Wen-tai, ZHAO Nan, LIU Chuang-chuang, SUI Ke-lin, HUO Wei-qi. HYDROCHEMISTRY AND GENESIS OF GROUNDWATER IN THE ALLUVIAL-PROLUVIAL FAN OF TAIZI RIVER[J]. Geology and Resources, 2024, 33(5): 690-700. doi: 10.13686/j.cnki.dzyzy.2024.05.009

HYDROCHEMISTRY AND GENESIS OF GROUNDWATER IN THE ALLUVIAL-PROLUVIAL FAN OF TAIZI RIVER

More Information
  • Based on the existing basic geological and hydrogeological data of the study area as well as hydrochemical data, the paper uses multiple methods including mathematical statistics, Schukalev classification, Piper diagram, Schoeller diagram, Gibbs diagram and ion ratio analysis to analyze the hydrochemical characteristics of groundwater in different areas of alluvial-proluvial fan, discusses the main controlling factors of groundwater evolution in different areas, and studies the status of groundwater environmental pollution. The results show that the groundwater in alluvial-proluvial fan of Taizi River is weakly affected by human activities, with the main hydrochemical types of HCO3·SO4-Ca and HCO3·SO4·Cl-Ca in the root fan, HCO3-Ca and HCO3·SO4-Ca types in the mid-fan and HCO3-Ca type in the end fan. The intensity and mode of rock weathering and ion exchange are various during groundwater evolution in different parts of Taizi River alluvial-proluvial fan. The nitrogen pollution in the groundwater is mainly affected by mining and metallurgical activities, chemical industry and agricultural activities, and its spatial distribution is closely related to human activities. The analysis and research on the hydrochemical types and characteristics, hydrochemical genesis of groundwater and the present situation of nitrogen pollution in Taizi River alluvial-proluvial fan can provide scientific basis for further exploitation and sustainable development of groundwater sources.

  • 加载中
  • [1] 王明君, 梁秀娟, 肖长来. 双辽市地下水化学特征及成因分析[J]. 水利水电技术, 2019, 50(3): 124-131.

    Google Scholar

    Wang M J, Liang X J, Xiao C L. Analysis on chemical characteristics and genesis of groundwater in Shuangliao City[J]. Water Resources and Hydropower Engineering, 2019, 50(3): 124-131.

    Google Scholar

    [2] 赵振, 陈惠娟, 段隆臣. 巴音河冲洪积扇前缘地下水位上升灾害特征及影响因素[J]. 水资源保护, 2023, 39(3): 142-147, 169.

    Google Scholar

    Zhao Z, Chen H J, Duan L C. Disaster characteristics and influencing factors of groundwater level rise in front edge of the Bayin River alluvial fan[J]. Water Resources Protection, 2023, 39(3): 142-147, 169.

    Google Scholar

    [3] 段磊, 王文科, 曹玉清, 等. 天山北麓中段地下水水化学特征及其形成作用[J]. 干旱区资源与环境, 2007, 21(9): 29-34.

    Google Scholar

    Duan L, Wang W K, Cao Y Q, et al. Hydrochemical characteristics and formation mechanics of groundwater in the middle of northern slope of Tianshan Mountains[J]. Journal of Arid Land Resources and Environment, 2007, 21(9): 29-34.

    Google Scholar

    [4] Reddy A G S, Kumar K N. Identification of the hydrogeochemical processes in groundwater using major ion chemistry: A case study of Penna-Chitravathi river basins in Southern India[J]. Environmental Monitoring and Assessment, 2010, 170(1/4): 365-382.

    Google Scholar

    [5] 张人权, 梁杏, 靳孟贵, 等. 当代水文地质学发展趋势与对策[J]. 水文地质工程地质, 2005, 32(1): 51-56.

    Google Scholar

    Zhang R Q, Liang X, Jin M G, et al. The trends in contemporary hydrogeology[J]. Hydrogeology & Engineering Geology, 2005, 32(1): 51-56.

    Google Scholar

    [6] Selvam S, Manimaran G, Sivasubramanian P, et al. GIS-based evaluation of water quality index of groundwater resources around Tuticorin coastal city, south India[J]. Environmental Earth Sciences, 2014, 71(6): 2847-2867. doi: 10.1007/s12665-013-2662-y

    CrossRef Google Scholar

    [7] Zhao X B, Guo H P, Wang Y L, et al. Groundwater hydrogeochemical characteristics and quality suitability assessment for irrigation and drinking purposes in an agricultural region of the North China Plain [J]. Environmental Earth Sciences, 2021, 80(4): 162. doi: 10.1007/s12665-021-09432-w

    CrossRef Google Scholar

    [8] 薛超. 辽宁省辽阳市水资源承载力评价[J]. 黑龙江水利科技, 2020, 48(1): 25-28.

    Google Scholar

    Xue C. Evaluation of water resources carrying capability of Liaoyang City in Liaoning Province[J]. Heilongjiang Hydraulic Science and Technology, 2020, 48(1): 25-28.

    Google Scholar

    [9] 孙才志, 胡冬玲, 杨磊. 下辽河平原地下水系统恢复力研究[J]. 水利水电科技进展, 2011, 31(5): 5-10.

    Google Scholar

    Sun C Z, Hu D L, Yang L. Recovery capacity of groundwater system in Lower Liaohe River Plain[J]. Advances in Science and Technology of Water Resources, 2011, 31(5): 5-10.

    Google Scholar

    [10] 张国. 辽阳市环境空气预警预报系统建设[J]. 科技展望, 2017, 27(9): 312.

    Google Scholar

    Zhang G. Construction of environmental air early warning and forecast system of Liaoyang City[J]. Technology Outlook, 2017, 27(9): 312. (in Chinese)

    Google Scholar

    [11] 丁妍, 李玉山, 康荣秋. 太子河冲积扇富水特征和富水地段分布规律[J]. 黑龙江水利科技, 2011, 39(3): 15-17.

    Google Scholar

    Ding Y, Li Y S, Kang R Q. Water-rich characteristics of alluvial fan of Taizi River and its distribution regularity in water-rich areas[J]. Heilongjiang Science and Technology of Water Conservancy, 2011, 39(3): 15-17. (in Chinese)

    Google Scholar

    [12] 杨劲松, 姜高磊, 赵华, 等. 内蒙古大青山山前第四纪冲洪积扇填图实践与思考[J]. 地质通报, 2022, 41(2/3): 262-270.

    Google Scholar

    Yang J S, Jiang G L, Zhao H, et al. Geological mapping practice and exploration of Quaternary alluvial-pluvial fans along the Daqing Mountain, Inner Mongolia[J]. Geological Bulletin of China, 2022, 41(2/3): 262-270.

    Google Scholar

    [13] 姜体胜, 曲辞晓, 王明玉, 等. 北京平谷平原区浅层地下水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(11): 122-127.

    Google Scholar

    Jiang T S, Qu C X, Wang M Y, et al. Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu Plain, Beijing[J]. Journal of Arid Land Resources and Environment, 2017, 31(11): 122-127.

    Google Scholar

    [14] El Maghraby M M S. Hydrogeochemical characterization of groundwater aquifer in Al-Madinah Al-Munawarah City, Saudi Arabia[J]. Arabian Journal of Geosciences, 2015, 8(6): 4191-4206. doi: 10.1007/s12517-014-1505-9

    CrossRef Google Scholar

    [15] Sarikhani R, Ghassemi Dehnavi A, Ahmadnejad Z, et al. Hydrochemical characteristics and groundwater quality assessment in Bushehr Province, SW Iran[J]. Environmental Earth Sciences, 2015, 74(7): 6265-6281. doi: 10.1007/s12665-015-4651-9

    CrossRef Google Scholar

    [16] 黄奇波, 覃小群, 刘朋雨, 等. 乌江中上游段河水主要离子化学特征及控制因素[J]. 环境科学, 2016, 37(5): 1779-1787.

    Google Scholar

    Huang Q B, Qin X Q, Liu P Y, et al. Major ionic features and their controlling factors in the upper-middle reaches of Wujiang River[J]. Environmental Science, 2016, 37(5): 1779-1787.

    Google Scholar

    [17] 孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究: 以广西大溶江、灵渠流域为例[J]. 环境科学, 2016, 37(1): 123-131.

    Google Scholar

    Sun P A, Yu S, Mo F Z, et al. Hydrochemical characteristics and influencing factors in different geological background: A case study in Darongjiang and Lingqu Basin, Guangxi, China[J]. Environmental Science, 2016, 37(1): 123-131.

    Google Scholar

    [18] 韦虹, 吴锦奎, 沈永平, 等. 额尔齐斯河源区融雪期积雪与河流的水化学特征[J]. 环境科学, 2016, 37(4): 1345-1352.

    Google Scholar

    Wei H, Wu J K, Shen Y P, et al. Hydrochemical characteristics of snow meltwater and river water during snow-melting period in the headwaters of the Ertis River, Xinjiang[J]. Environmental Science, 2016, 37(4): 1345-1352.

    Google Scholar

    [19] 赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水演化的主要水文地球化学过程分析[J]. 环境化学, 2017, 36(6): 1397-1406.

    Google Scholar

    Zhao J T, Zhou J L, Liang C, et al. Hydrogeochemical process of evolution of groundwater in plain area of Yanqi, Xinjiang[J]. Environmental Chemistry, 2017, 36(6): 1397-1406.

    Google Scholar

    [20] 唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析[J]. 环境科学, 2019, 40(7): 3089-3098.

    Google Scholar

    Tang J P, Zhang Q, Hu Y, et al. Groundwater chemical characteristics and analysis of their controlling factors in an alluvial fan of Jianjiang River[J]. Environmental Science, 2019, 40(7): 3089-3098.

    Google Scholar

    [21] 张英, 刘春燕, 王金翠, 等. 快速城镇化进程中典型冲洪积扇地下水化学演变特征及影响因素解析[J]. 南水北调与水利科技, 2019, 17(5): 172-179, 193.

    Google Scholar

    Zhang Y, Liu C Y, Wang J C, et al. Analysis of characteristics and influencing factors of groundwater chemical evolution of typical alluvial fans of rapid urbanization[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(5): 172-179, 193.

    Google Scholar

    [22] Marandi A, Shand P. Groundwater chemistry and the Gibbs diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009

    CrossRef Google Scholar

    [23] Xing L N, Guo H M, Zhan Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 2013, 70-71: 250-264. doi: 10.1016/j.jseaes.2013.03.017

    CrossRef Google Scholar

    [24] Zhu B Q, Yang X P, Rioual P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 2011, 26(8): 1535-1548. doi: 10.1016/j.apgeochem.2011.06.018

    CrossRef Google Scholar

    [25] 马燕华, 苏春利, 刘伟江, 等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12): 4690-4699.

    Google Scholar

    Ma Y H, Su C L, Liu W J, et al. Identification of sulfate sources in the groundwater system of Zaozhuang: Evidences from isotopic and hydrochemical characteristics[J]. Environmental Science, 2016, 37(12): 4690-4699.

    Google Scholar

    [26] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1/4): 3-30.

    Google Scholar

    [27] 吕婕梅, 安艳玲, 吴起鑫, 等. 清水江流域岩石风化特征及其碳汇效应[J]. 环境科学, 2016, 37(12): 4671-4679.

    Google Scholar

    Lü J M, An Y L, Wu Q X, et al. Rock weathering characteristics and the atmospheric carbon sink in the chemical weathering processes of Qingshuijiang River Basin[J]. Environmental Science, 2016, 37(12): 4671-4679.

    Google Scholar

    [28] 杜文越, 何若雪, 何师意, 等. 桂江上游水化学特征变化及离子来源分析——以桂林断面为例[J]. 中国岩溶, 2017, 36(2): 207-214.

    Google Scholar

    Du W Y, He R X, He S Y, et al. Variation of hydrochemical characteristics and the ion source in the upstream of Guijiang River: A case study in Guilin section[J]. Carsologica Sinica, 2017, 36(2): 207-214.

    Google Scholar

    [29] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537-4545.

    Google Scholar

    Zhang T, Cai W T, Li Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 2017, 38(11): 4537-4545.

    Google Scholar

    [30] 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析[J]. 环境科学, 2018, 39(12): 5428-5439.

    Google Scholar

    Liu J T, Cai W T, Cao Y T, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River[J]. Environmental Science, 2018, 39(12): 5428-5439.

    Google Scholar

    [31] Karim A, Veizer J. Weathering processes in the Indus River Basin: Implications from riverine carbon, sulfur, oxygen, and strontium isotopes[J]. Chemical Geology, 2000, 170(1/4): 153-177.

    Google Scholar

    [32] 何朝鑫, 陈翠华, 李佑国, 等. 青海省都兰县双庆铁矿床金属硫化物地球化学特征及其指示意义[J]. 地球化学, 2015, 44(4): 392-401.

    Google Scholar

    He C X, Chen C H, Li Y G, et al. Metal sulfides of the Shuangqing iron deposit in Dulan, Qinghai Province: Geochemical characteristics and implications[J]. Geochimica, 2015, 44(4): 392-401.

    Google Scholar

    [33] 刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414.

    Google Scholar

    Liu C Q, Jiang Y K, Tao F X, et al. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica, 2008, 37(4): 404-414.

    Google Scholar

    [34] 马秀平, 井维鑫, 王茜, 等. 丹河水系表层沉积物重金属污染及生态风险评价[J]. 农业环境科学学报, 2010, 29(6): 1180-1186.

    Google Scholar

    Ma X P, Jing W X, Wang Q, et al. Heavy metal pollution in the surface sediment of Dan River and its ecological risk assessment[J]. Journal of Agro-Environment Science, 2010, 29(6): 1180-1186.

    Google Scholar

    [35] 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436.

    Google Scholar

    Lü X L, Liu J T, Zhou B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436.

    Google Scholar

    [36] 葛婷婷, 周金龙, 曾妍妍. 新疆克里雅河流域平原区地下水"三氮" 的空间分布特征及影响因素[J]. 干旱区资源与环境, 2022, 36(1): 89-95.

    Google Scholar

    Ge T T, Zhou J L, Zeng Y Y. Spatial distribution characteristics of groundwater "three-nitrogen" in the plain area of the Keriya River basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2022, 36(1): 89-95.

    Google Scholar

    [37] 吴嘉铃, 王莹, 胡倩, 等. 雷州半岛地下水水化学特征及成因分析[J]. 安全与环境工程, 2022, 29(1): 145-153, 162.

    Google Scholar

    Wu J L, Wang Y, Hu Q, et al. Hydrochemical characteristics and genetic analysis of groundwater in Leizhou Peninsula[J]. Safety and Environmental Engineering, 2022, 29(1): 145-153, 162.

    Google Scholar

    [38] 黄俊霖, 郑明霞, 苏婧, 等. 奎河河水入渗对河岸带地下水氨氮和硝酸盐氮浓度的影响[J]. 环境科学研究, 2020, 33(2): 421-430.

    Google Scholar

    Huang J L, Zheng M X, Su J, et al. Effects of Kuihe River infiltration on the concentration of ammonia nitrogen and nitrate nitrogen in groundwater of riparian zone[J]. Research of Environmental Sciences, 2020, 33(2): 421-430.

    Google Scholar

    [39] 李丽君, 李旭光. 西辽河平原浅层地下水中"三氮"分布特征及健康风险评价[J]. 地质与资源, 2024, 33(1): 90-97. DOI: 10.13686/j.cnki.dzyzy.2024.01.011

    CrossRef Google Scholar

    Li L J, Li X G. Distribution of nitrogen in the shallow groundwater of West Liaohe River Plain and health risk assessment[J]. Geology and Resources, 2024, 33(1): 90-97. DOI: 10.13686/j.cnki.dzyzy.2024.01.011

    CrossRef Google Scholar

    [40] 杨国华, 冯文新, 孟博. 不同空间插值方法对某灌区地下水氮浓度分析结果的影响[J]. 成都理工大学学报(自然科学版), 2021, 48(4): 488-496.

    Google Scholar

    Yang G H, Feng W X, Meng B. Influence of different spatial interpolation methods on the analysis results of groundwater nitrogen pollution in an irrigated area[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(4): 488-496.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(1)

Article Metrics

Article views(124) PDF downloads(99) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint