2024 Vol. 57, No. 3
Article Contents

WU Yanrong, ZHOU Hai, ZHAO Guochun, HAN Yigui, ZHANG Donghai, WANG Meng, ZHAO Shaowei, PEI Xianzhi, ZHAO Qian, Narantsetseg Tserendash, GENG Hongyan, Enkh-Orshikh Orsoo. 2024. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications. Northwestern Geology, 57(3): 11-28. doi: 10.12401/j.nwg.2023152
Citation: WU Yanrong, ZHOU Hai, ZHAO Guochun, HAN Yigui, ZHANG Donghai, WANG Meng, ZHAO Shaowei, PEI Xianzhi, ZHAO Qian, Narantsetseg Tserendash, GENG Hongyan, Enkh-Orshikh Orsoo. 2024. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications. Northwestern Geology, 57(3): 11-28. doi: 10.12401/j.nwg.2023152

Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications

More Information
  • As the largest Phanerozoic accretionary orogenic belt in the world, the Central Asian Orogenic Belt (CAOB) records the whole process of subduction, accretion and closure of the Paleo-Asian Ocean (PAO). The southern Mongolia, in the central segment of the southern CAOB, has successively developed rock associations of arc-magmatic activity and later extensional activity during the late Paleozoic, which is a key area for studying the accretion and transformation of continental crust. Combined with regional geological characteristics and previous studies, this paper systematically sorted out and summarized the rock association of the key period of Carboniferous-Permian in Southern Mongolia and the magmatic activity can be roughly divided into three stages: Early Carboniferous (350~325 Ma), Late Carboniferous (320~305 Ma), and the early Permian (300~280 Ma). During Early Carboniferous (350~325 Ma), the Southern Mongolia developed typical arc-type magmatic rocks having a southward migration trend. Whole-rock Nd and zircon Hf isotopes show that these rocks have significant mantle contribution. Combined with previous works, this resulted from slab retreating of a series of secondary back-are oceans of the PAO on the north of its main ocean basin. During Late Carboniferous (320~305 Ma), The southern Mongolia was dominated by high silica granites, especially the alkaline feldspar granites and syenites (315~310 Ma), which were produced by the remelting of earlier arc crusts, indicating the cessation of significant consumption of subducted oceanic plates. During the early Permian (300~280 Ma), extension-related magmatic rocks, such as A-type granite, bi-model volcanic rocks and basic dikes, were developed. The above magmatic activities showed the characteristics of high temperature and significant contribution of mantle materials. Therefore, we support that it was caused by the slab breakoff by high-angle subduction resulted from the aforementioned Carboniferous slab retreating. Previous studies show that there are similar rocks, structure and sedimentary records on both east and west sides of Southern Mongolia. Therefore, the Devonian-Permian subduction and slab retreating of the main basin of the PAO caused the opening, subduction and closure of a series of secondary back-arc basins on the northern side of the PAO, which were accompanied by the last large-scale lateral crustal accretion of the southern CAOB and its cessation with subsequent slab-breakoff-induced vertical crustal accretion.

  • 加载中
  • [1] 陈维民, 白建科, 仇银江, 等. 西天山特克斯地区哈拉达拉基性岩体LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 西北地质, 2017, 50(02): 69-79 doi: 10.3969/j.issn.1009-6248.2017.02.007

    CrossRef Google Scholar

    CHEN Weimin, BAI Jianke, CHOU Yinjiang, et al. LA-ICP-MS Zircon U-Pb Dating of the Haladala Basic Plution in Tekesi County, Western Tianshan and Its Geological Implication[J]. Northwestern Geology, 2017, 50(02): 69-79. doi: 10.3969/j.issn.1009-6248.2017.02.007

    CrossRef Google Scholar

    [2] 付超, 李俊建, 张帅, 等.中蒙边界地区侵入岩时空分布特征及对构造演化的启示[J].华北地质, 2023, 46(1): 1−19.

    Google Scholar

    FU Chao, LI Junjian, ZHANG Shuai, et al. The temporal and spatial distribution characteristics of intrusive rocks in the border area between China and Mongolia and its implications for tectonic evolution[J]. North China Geology, 2023, 46(1): 1−19.

    Google Scholar

    [3] 滕飞, 苏春乾, 夏明哲, 等. 北天山东段石英滩地区早二叠世火山岩岩石组合与岩浆生成动力学机制[J]. 西北地质, 2017, 50(01): 110-125 doi: 10.3969/j.issn.1009-6248.2017.01.011

    CrossRef Google Scholar

    TENG Fei, SU Chunqian, XIA Mingzhe, et al. The Early Permian Volcanic Rock Association and the Dynamics Mechanism for the Magma Generation in the Shiyingtan Area, Eastern Tianshan[J]. Northwestern Geology, 2017, 50(01): 110-125. doi: 10.3969/j.issn.1009-6248.2017.01.011

    CrossRef Google Scholar

    [4] 王博, 赵国春. 古亚洲洋的最终闭合时限: 来自白乃庙岛弧带东段二叠纪—三叠纪岩浆作用的证据[J]. 西北大学学报(自然科学版), 2021, (06): 1019-1030

    Google Scholar

    WANG Bo, ZHAO Guochun. Final closure of the Paleo-Asian ocean: Constraints from permian-triassic magmatism in the eastern segment of the Bainaimiao Arc Belt[J]. Journal of northwest university (natural science edition), 2021, (06): 1019-1030.

    Google Scholar

    [5] 肖文交, 宋东方, Windley B F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512-1545

    Google Scholar

    XIAO Wenjiao, SONG Dongfang, Windley B F, et al. Research progress of accretive orogeny and mineralization in Central Asia [J]. Scientia Sinica(Terrae), 2014, 49(10): 1512-1545.

    Google Scholar

    [6] 张永玲, 张治国, 刘希军, 等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质, 2024, 57(1): 122−138.

    Google Scholar

    ZHANG Yongling, ZHANG Zhiguo, LIU Xijun, et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology, 2024, 57(1): 122−138.

    Google Scholar

    [7] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [8] Blight J H S, Crowley Q G, Petterson M G, et al. Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints[J]. Lithos, 2010, 116(1-2): 35-52. doi: 10.1016/j.lithos.2010.01.001

    CrossRef Google Scholar

    [9] Comeau M J, Becken M, Kaufl J S, et al. Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect[J]. Earth Planets and Space, 2020, 72(1): 87-110. doi: 10.1186/s40623-020-01214-1

    CrossRef Google Scholar

    [10] Chai H, Ma Y F, Santosh M, et al. Late Carboniferous to early Permian oceanic subduction in central Inner Mongolia and its correlation with the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 84: 245-259. doi: 10.1016/j.gr.2020.02.016

    CrossRef Google Scholar

    [11] Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019

    CrossRef Google Scholar

    [12] Chung S L, Liu D, Ji J, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. doi: 10.1130/G19796.1

    CrossRef Google Scholar

    [13] Davies J H, Blanckenburg F V. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129(1-4): 85-102. doi: 10.1016/0012-821X(94)00237-S

    CrossRef Google Scholar

    [14] Davaasuren O E, Koh S M, Kim N, et al. Late Paleozoic adakitic magmatism in the Zogdor Cu occurrences, southern Mongolia, and their tectonic implications: New SHRIMP zircon age dating, Lu-Hf isotope systematics and geochemical constraints[J]. Ore Geology Reviews, 2021, 138: 104356. doi: 10.1016/j.oregeorev.2021.104356

    CrossRef Google Scholar

    [15] Du L, Long X P, Yuan C, et al. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff[J]. Lithos, 2018, 318-319: 47-59. doi: 10.1016/j.lithos.2018.08.006

    CrossRef Google Scholar

    [16] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [17] Jahn B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 2004, 226(1): 73-100. doi: 10.1144/GSL.SP.2004.226.01.05

    CrossRef Google Scholar

    [18] Jian P, Liu D, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118 (1-2): 169-190. doi: 10.1016/j.lithos.2010.04.014

    CrossRef Google Scholar

    [19] Han Y G, Zhao G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152. doi: 10.1016/j.earscirev.2017.09.012

    CrossRef Google Scholar

    [20] Helo C, Hegner E, Kröner A, et al. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth[J]. Chemical Geology, 2006, 227(3): 236-257.

    Google Scholar

    [21] Hrdličkovà K, Bolormaa K, Buriánek D, et al. Petrology and age of metamorphosed rock in tectonic slices inside the Palaeozoic sediments of the eastern Mongolian Altay, SW Mongolia[J]. Journal of Geosciences, 2008, 53: 139-165.

    Google Scholar

    [22] Hu C S, Li W B, Huang Q Y, et al. Geochemistry and petrogenesis of Late Carboniferous igneous rocks from southern Mongolia: Implications for the post-collisional extension in the southeastern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2017, 144: 141-154. doi: 10.1016/j.jseaes.2017.01.011

    CrossRef Google Scholar

    [23] Gerdes A, Kogarko L N, Vladykin N V. New data on the age and nature of the Khan-Bogd alkaline granites, Mongolia[J]. Doklady Earth Sciences, 2017, 477(1): 1320-1324. doi: 10.1134/S1028334X17110137

    CrossRef Google Scholar

    [24] Guy A, Schulmann K, Clauer N, et al. Late Paleozoic–Mesozoic tectonic evolution of the Trans-Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data[J]. Gondwana Research, 2014, 25(1): 309-337. doi: 10.1016/j.gr.2013.03.014

    CrossRef Google Scholar

    [25] Kozlovsky A M, Yarmolyuk V V, Travin A V, et al. Stages and regularities in the development of Late Paleozoic anorogenic volcanism in the southern Mongolia Hercynides[J]. Doklady Earth Sciences, 2012, 445(1): 811-817. doi: 10.1134/S1028334X12070239

    CrossRef Google Scholar

    [26] Kozlovsky A M, Yarmolyuk V V, Salnikova E B, et al. Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 113(1): 524-541.

    Google Scholar

    [27] Kovalenko V I, Yarmoluyk V V, Sal’nikova E B, et al. Geology, Geochronology, and Geodynamics of the Khan Bogd Alkali Granite Pluton in Southern Mongolia[J]. Geotectonics, 2006, 40(6): 450-446. doi: 10.1134/S0016852106060033

    CrossRef Google Scholar

    [28] Kovalenko V I, Kozlovsky A M, Yarmolyuk V V. Comendite-Bearing Subduction Related Volcanic Associations in the Khan-Bogd Area, Southern Mongolia: Geochemical Data[J]. Petrology, 2010, 18(6): 571-595. doi: 10.1134/S0869591110060020

    CrossRef Google Scholar

    [29] Kröner A, Lehmann J, Schulmann K, et al. Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion[J]. American Journal of Science, 2010, 310(7): 523-574. doi: 10.2475/07.2010.01

    CrossRef Google Scholar

    [30] Kröner A, Kovach V, Belousova E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125. doi: 10.1016/j.gr.2012.12.023

    CrossRef Google Scholar

    [31] Lehmann J, Schulmann K, Lexa O, et al. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 2010, 61: 135-140.

    Google Scholar

    [32] Li S, Chung S L, Wilde S A, et al. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 2291-2309.

    Google Scholar

    [33] Liu H D, Cheng Y H, Santosh M, et al. Magmatism associated with lithospheric thinning, mantle upwelling, and extensional tectonics: Evidence from Carboniferous-Permian dyke swarms and granitoids from Inner Mongolia, Central Asian Orogenic Belt[J]. Lithos, 2021, 386: 106004.

    Google Scholar

    [34] Long X P, Wu B, Sun M, et al. Geochronology and geochemistry of Late Carboniferous dykes in the Aqishan-Yamansu belt, Eastern Tianshan: evidence for a post-collisional slab breakoff[J]. Geoscience Frontiers, 2020, 11(1): 347-362. doi: 10.1016/j.gsf.2019.06.003

    CrossRef Google Scholar

    [35] Lu L, Qin Y, Han C Y, et al. Provenance and tectonic settings of the Late Paleozoic sandstones in central Inner Mongolia, NE China: Constraints on the evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 77: 111-135. doi: 10.1016/j.gr.2019.07.006

    CrossRef Google Scholar

    [36] Meissner R, Mooney W. Weakness of the lower continental crust: a condition for delamination, uplift, and escape[J]. Tectonophysics, 1998, 296: 47-60. doi: 10.1016/S0040-1951(98)00136-X

    CrossRef Google Scholar

    [37] Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Tectonophysics, 2003, 369(3): 155-174.

    Google Scholar

    [38] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [39] Miniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [40] Niu Y Z, Shi G R, Ji W H, et al. Paleogeographic evolution of a Carboniferous–Permian sea in the southernmost part of the Central Asian Orogenic Belt, NW China: Evidence from microfacies, provenance and paleobiogeography[J]. Earth-Science Reviews, 2021, 220: 103738. doi: 10.1016/j.earscirev.2021.103738

    CrossRef Google Scholar

    [41] Peccerillo A, Taylor S R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [42] Safonova I, Maruyama S. Asia: a frontier for a future supercontinent Amasia[J]. International Geology Review, 2014, 56(9): 1051-1071. doi: 10.1080/00206814.2014.915586

    CrossRef Google Scholar

    [43] Sengör A C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-306. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [44] Shu L S, Zhu W B, Wang B, et al. The post-collision intracontinental rifting and olistostrome on the southern slope of Bogda Mountains, Xinjiang[J]. Acta Petrologica Sinica, 2005, 21(1): 25-36.

    Google Scholar

    [45] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [46] Tang G J, Chung S L, Hawkesworth C J, et al. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China[J]. Earth and Planetary Science Letters, 2017, 464:142-154.

    Google Scholar

    [47] Wainwright A J, Tosdal R M, Wooden J L, et al. U–Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern Mongolia[J]. Gondwana Research, 2011, 19(3): 764-787. doi: 10.1016/j.gr.2010.11.012

    CrossRef Google Scholar

    [48] Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth Planetary Science Letters, 1983, 64: 295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [49] Wei R H, Gao Y F, Xu S C, et al. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 2018, 308-309: 242-261. doi: 10.1016/j.lithos.2018.03.010

    CrossRef Google Scholar

    [50] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [51] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [52] Windley B F, Xiao W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 2018, 61: 73-87. doi: 10.1016/j.gr.2018.05.003

    CrossRef Google Scholar

    [53] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt [J]. Tectonics, 2003, 22(6): 1484-1505.

    Google Scholar

    [54] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [55] Xiao W J, Windley B F, Sun S, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 477-507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [56] Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [57] Xu B, Zhao G C, Li J H, et al. Ages and Hf isotopes of detrital zircons from the Permian strata in the Bengbatu are (Inner Mongolia) and tectonic implications[J]. Geoscience Frontiers, 2019, 10(1): 195-212. doi: 10.1016/j.gsf.2018.08.003

    CrossRef Google Scholar

    [58] Yang S H, Miao L C, Zhang F C, et al. Detrital zircon age spectra of the Gurvan Sayhan accretionary complex in South Mongolia: Constraints on the Late Paleozoic evolution of the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 175: 213-229. doi: 10.1016/j.jseaes.2018.07.041

    CrossRef Google Scholar

    [59] Yarmolyuk V V, Kovalenko V I, Sal'nikova E B, et al. Geochronology of igneous rocks and formation of the late Paleozoic south Mongolian active margin of the Siberian continent[J]. Stratigraphy and Geological Correlation, 2008a, 16(2): 162-181. doi: 10.1134/S0869593808020056

    CrossRef Google Scholar

    [60] Yarmolyuk V V, Kovalenko V I, Kozlovsky A M, et al. Crust-forming processes in the Hercynides of the Central Asian Foldbelt[J]. Petrology, 2008b, 16(7): 679-709. doi: 10.1134/S0869591108070035

    CrossRef Google Scholar

    [61] Yarmolyuk V V, Kuzmin M I, Kozlovsky A M. Late Paleozoic-Early Mesozoic Within Plate Magmatism in North Asia: Traps, Rifts, Giant Batholiths, and the Geodynamics of Their Origin[J]. Petrology, 2013, 21(2): 115-142.

    Google Scholar

    [62] Yarmolyuk V V, Kozlovsky A M, Travin A V. Late Paleozoic anorogenic magmatism in Southern Mongolia: Evolutionary stages and structural control[J]. Doklady Earth Sciences, 2017, 475(1): 753-757. doi: 10.1134/S1028334X17070200

    CrossRef Google Scholar

    [63] Zhang D H, Huang B C, Zhao G C, et al. Quantifying the extent of the Paleo-Asian Ocean during the Late Carboniferous to Early Permian[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094498.

    Google Scholar

    [64] Zhang S H, Zhao Y, Liu J M, et al. Different sources involved in generation of continental arc volcanism: The Carboniferous–Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 2016, 240-243: 382-401. doi: 10.1016/j.lithos.2015.11.027

    CrossRef Google Scholar

    [65] Zhang X H, Yuan L L, Xue F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1), 311-327. doi: 10.1016/j.gr.2014.02.011

    CrossRef Google Scholar

    [66] Zhang Y Y, Sun M, Yuan C, et al. Alternating Trench Advance and Retreat: Insights from Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt[J]. Tectonics, 2018, 37: 2142-2164. doi: 10.1029/2018TC005051

    CrossRef Google Scholar

    [67] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003

    CrossRef Google Scholar

    [68] Zhou H, Zhao G C, Han Y G, et al. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc[J]. Lithos, 2018, 314-315: 119-139. doi: 10.1016/j.lithos.2018.05.020

    CrossRef Google Scholar

    [69] Zhou H, Zhao G C, Li J H, et al. Magmatic evidence for middle-late Permian tectonic evolution on the northern margin of the North China Craton[J]. Lithos, 2019, 336-337: 125-142. doi: 10.1016/j.lithos.2019.04.002

    CrossRef Google Scholar

    [70] Zhou H, Zhao G C, Han Y G, et al. The Late Carboniferous to Early Permian high silica magmatism in the Southern Mongolia: Implications for tectonic evolution and continental growth[J]. Gondwana Research, 2021a, 97: 34-50. doi: 10.1016/j.gr.2021.05.005

    CrossRef Google Scholar

    [71] Zhou H, Zhao G C, Han Y G, et al. Magmatic evidence for Late Carboniferous-Early Permian slab breakoff and extension of the southern Mongolia collage system in Central Asia[J]. Gondwana Research, 2021b, 89: 105-118. doi: 10.1016/j.gr.2020.09.006

    CrossRef Google Scholar

    [72] Zhou H, Zhao G C, Han Y G, et al. Carboniferous slab-retreating subduction of backarc oceans: the final large-scale lateral accretion of the southern Central Asian Orogenic Belt[J]. Science Bulletin, 2022, 67(13): 1388-1398. doi: 10.1016/j.scib.2022.05.002

    CrossRef Google Scholar

    [73] Zhou H, Zhao G C, Han Y G, et al. The early Permian high-temperature felsic magmatism induced by slab breakoff in Southern Mongolia, Central Asian Orogenic Belt and its tectonic implications[J]. Lithos, 2023, 442-443: 107083. doi: 10.1016/j.lithos.2023.107083

    CrossRef Google Scholar

    [74] Zhu M S, Baatar M, Miao L C, et al. Zircon ages and geochemical compositions of the Manlay ophiolite and coeval island arc: Implications for the tectonic evolution of South Mongolia[J]. Journal of Asian Earth Sciences, 2014, 96(15): 108-122.

    Google Scholar

    [75] Zhu M S, Miao L C, Baatar M, et al. Late Paleozoic magmatic record of Middle Gobi area, South Mongolia and its implications for tectonic evolution: Evidences from zircon U–Pb dating and geochemistry[J]. Journal of Asian Earth Sciences, 2016, 115: 507-519. doi: 10.1016/j.jseaes.2015.11.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1527) PDF downloads(192) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint