Citation: | WU Yanrong, ZHOU Hai, ZHAO Guochun, HAN Yigui, ZHANG Donghai, WANG Meng, ZHAO Shaowei, PEI Xianzhi, ZHAO Qian, Narantsetseg Tserendash, GENG Hongyan, Enkh-Orshikh Orsoo. 2024. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications. Northwestern Geology, 57(3): 11-28. doi: 10.12401/j.nwg.2023152 |
As the largest Phanerozoic accretionary orogenic belt in the world, the Central Asian Orogenic Belt (CAOB) records the whole process of subduction, accretion and closure of the Paleo-Asian Ocean (PAO). The southern Mongolia, in the central segment of the southern CAOB, has successively developed rock associations of arc-magmatic activity and later extensional activity during the late Paleozoic, which is a key area for studying the accretion and transformation of continental crust. Combined with regional geological characteristics and previous studies, this paper systematically sorted out and summarized the rock association of the key period of Carboniferous-Permian in Southern Mongolia and the magmatic activity can be roughly divided into three stages: Early Carboniferous (350~325 Ma), Late Carboniferous (320~305 Ma), and the early Permian (300~280 Ma). During Early Carboniferous (350~325 Ma), the Southern Mongolia developed typical arc-type magmatic rocks having a southward migration trend. Whole-rock Nd and zircon Hf isotopes show that these rocks have significant mantle contribution. Combined with previous works, this resulted from slab retreating of a series of secondary back-are oceans of the PAO on the north of its main ocean basin. During Late Carboniferous (320~305 Ma), The southern Mongolia was dominated by high silica granites, especially the alkaline feldspar granites and syenites (315~310 Ma), which were produced by the remelting of earlier arc crusts, indicating the cessation of significant consumption of subducted oceanic plates. During the early Permian (300~280 Ma), extension-related magmatic rocks, such as A-type granite, bi-model volcanic rocks and basic dikes, were developed. The above magmatic activities showed the characteristics of high temperature and significant contribution of mantle materials. Therefore, we support that it was caused by the slab breakoff by high-angle subduction resulted from the aforementioned Carboniferous slab retreating. Previous studies show that there are similar rocks, structure and sedimentary records on both east and west sides of Southern Mongolia. Therefore, the Devonian-Permian subduction and slab retreating of the main basin of the PAO caused the opening, subduction and closure of a series of secondary back-arc basins on the northern side of the PAO, which were accompanied by the last large-scale lateral crustal accretion of the southern CAOB and its cessation with subsequent slab-breakoff-induced vertical crustal accretion.
[1] | 陈维民, 白建科, 仇银江, 等. 西天山特克斯地区哈拉达拉基性岩体LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 西北地质, 2017, 50(02): 69-79 doi: 10.3969/j.issn.1009-6248.2017.02.007 CHEN Weimin, BAI Jianke, CHOU Yinjiang, et al. LA-ICP-MS Zircon U-Pb Dating of the Haladala Basic Plution in Tekesi County, Western Tianshan and Its Geological Implication[J]. Northwestern Geology, 2017, 50(02): 69-79. doi: 10.3969/j.issn.1009-6248.2017.02.007 |
[2] | 付超, 李俊建, 张帅, 等.中蒙边界地区侵入岩时空分布特征及对构造演化的启示[J].华北地质, 2023, 46(1): 1−19. FU Chao, LI Junjian, ZHANG Shuai, et al. The temporal and spatial distribution characteristics of intrusive rocks in the border area between China and Mongolia and its implications for tectonic evolution[J]. North China Geology, 2023, 46(1): 1−19. |
[3] | 滕飞, 苏春乾, 夏明哲, 等. 北天山东段石英滩地区早二叠世火山岩岩石组合与岩浆生成动力学机制[J]. 西北地质, 2017, 50(01): 110-125 doi: 10.3969/j.issn.1009-6248.2017.01.011 TENG Fei, SU Chunqian, XIA Mingzhe, et al. The Early Permian Volcanic Rock Association and the Dynamics Mechanism for the Magma Generation in the Shiyingtan Area, Eastern Tianshan[J]. Northwestern Geology, 2017, 50(01): 110-125. doi: 10.3969/j.issn.1009-6248.2017.01.011 |
[4] | 王博, 赵国春. 古亚洲洋的最终闭合时限: 来自白乃庙岛弧带东段二叠纪—三叠纪岩浆作用的证据[J]. 西北大学学报(自然科学版), 2021, (06): 1019-1030 WANG Bo, ZHAO Guochun. Final closure of the Paleo-Asian ocean: Constraints from permian-triassic magmatism in the eastern segment of the Bainaimiao Arc Belt[J]. Journal of northwest university (natural science edition), 2021, (06): 1019-1030. |
[5] | 肖文交, 宋东方, Windley B F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512-1545 XIAO Wenjiao, SONG Dongfang, Windley B F, et al. Research progress of accretive orogeny and mineralization in Central Asia [J]. Scientia Sinica(Terrae), 2014, 49(10): 1512-1545. |
[6] | 张永玲, 张治国, 刘希军, 等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质, 2024, 57(1): 122−138. ZHANG Yongling, ZHANG Zhiguo, LIU Xijun, et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology, 2024, 57(1): 122−138. |
[7] | Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. doi: 10.1016/S1367-9120(02)00017-2 |
[8] | Blight J H S, Crowley Q G, Petterson M G, et al. Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints[J]. Lithos, 2010, 116(1-2): 35-52. doi: 10.1016/j.lithos.2010.01.001 |
[9] | Comeau M J, Becken M, Kaufl J S, et al. Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect[J]. Earth Planets and Space, 2020, 72(1): 87-110. doi: 10.1186/s40623-020-01214-1 |
[10] | Chai H, Ma Y F, Santosh M, et al. Late Carboniferous to early Permian oceanic subduction in central Inner Mongolia and its correlation with the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 84: 245-259. doi: 10.1016/j.gr.2020.02.016 |
[11] | Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019 |
[12] | Chung S L, Liu D, Ji J, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. doi: 10.1130/G19796.1 |
[13] | Davies J H, Blanckenburg F V. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129(1-4): 85-102. doi: 10.1016/0012-821X(94)00237-S |
[14] | Davaasuren O E, Koh S M, Kim N, et al. Late Paleozoic adakitic magmatism in the Zogdor Cu occurrences, southern Mongolia, and their tectonic implications: New SHRIMP zircon age dating, Lu-Hf isotope systematics and geochemical constraints[J]. Ore Geology Reviews, 2021, 138: 104356. doi: 10.1016/j.oregeorev.2021.104356 |
[15] | Du L, Long X P, Yuan C, et al. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff[J]. Lithos, 2018, 318-319: 47-59. doi: 10.1016/j.lithos.2018.08.006 |
[16] | Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 |
[17] | Jahn B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 2004, 226(1): 73-100. doi: 10.1144/GSL.SP.2004.226.01.05 |
[18] | Jian P, Liu D, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118 (1-2): 169-190. doi: 10.1016/j.lithos.2010.04.014 |
[19] | Han Y G, Zhao G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152. doi: 10.1016/j.earscirev.2017.09.012 |
[20] | Helo C, Hegner E, Kröner A, et al. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth[J]. Chemical Geology, 2006, 227(3): 236-257. |
[21] | Hrdličkovà K, Bolormaa K, Buriánek D, et al. Petrology and age of metamorphosed rock in tectonic slices inside the Palaeozoic sediments of the eastern Mongolian Altay, SW Mongolia[J]. Journal of Geosciences, 2008, 53: 139-165. |
[22] | Hu C S, Li W B, Huang Q Y, et al. Geochemistry and petrogenesis of Late Carboniferous igneous rocks from southern Mongolia: Implications for the post-collisional extension in the southeastern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2017, 144: 141-154. doi: 10.1016/j.jseaes.2017.01.011 |
[23] | Gerdes A, Kogarko L N, Vladykin N V. New data on the age and nature of the Khan-Bogd alkaline granites, Mongolia[J]. Doklady Earth Sciences, 2017, 477(1): 1320-1324. doi: 10.1134/S1028334X17110137 |
[24] | Guy A, Schulmann K, Clauer N, et al. Late Paleozoic–Mesozoic tectonic evolution of the Trans-Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data[J]. Gondwana Research, 2014, 25(1): 309-337. doi: 10.1016/j.gr.2013.03.014 |
[25] | Kozlovsky A M, Yarmolyuk V V, Travin A V, et al. Stages and regularities in the development of Late Paleozoic anorogenic volcanism in the southern Mongolia Hercynides[J]. Doklady Earth Sciences, 2012, 445(1): 811-817. doi: 10.1134/S1028334X12070239 |
[26] | Kozlovsky A M, Yarmolyuk V V, Salnikova E B, et al. Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 113(1): 524-541. |
[27] | Kovalenko V I, Yarmoluyk V V, Sal’nikova E B, et al. Geology, Geochronology, and Geodynamics of the Khan Bogd Alkali Granite Pluton in Southern Mongolia[J]. Geotectonics, 2006, 40(6): 450-446. doi: 10.1134/S0016852106060033 |
[28] | Kovalenko V I, Kozlovsky A M, Yarmolyuk V V. Comendite-Bearing Subduction Related Volcanic Associations in the Khan-Bogd Area, Southern Mongolia: Geochemical Data[J]. Petrology, 2010, 18(6): 571-595. doi: 10.1134/S0869591110060020 |
[29] | Kröner A, Lehmann J, Schulmann K, et al. Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion[J]. American Journal of Science, 2010, 310(7): 523-574. doi: 10.2475/07.2010.01 |
[30] | Kröner A, Kovach V, Belousova E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125. doi: 10.1016/j.gr.2012.12.023 |
[31] | Lehmann J, Schulmann K, Lexa O, et al. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 2010, 61: 135-140. |
[32] | Li S, Chung S L, Wilde S A, et al. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 2291-2309. |
[33] | Liu H D, Cheng Y H, Santosh M, et al. Magmatism associated with lithospheric thinning, mantle upwelling, and extensional tectonics: Evidence from Carboniferous-Permian dyke swarms and granitoids from Inner Mongolia, Central Asian Orogenic Belt[J]. Lithos, 2021, 386: 106004. |
[34] | Long X P, Wu B, Sun M, et al. Geochronology and geochemistry of Late Carboniferous dykes in the Aqishan-Yamansu belt, Eastern Tianshan: evidence for a post-collisional slab breakoff[J]. Geoscience Frontiers, 2020, 11(1): 347-362. doi: 10.1016/j.gsf.2019.06.003 |
[35] | Lu L, Qin Y, Han C Y, et al. Provenance and tectonic settings of the Late Paleozoic sandstones in central Inner Mongolia, NE China: Constraints on the evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 77: 111-135. doi: 10.1016/j.gr.2019.07.006 |
[36] | Meissner R, Mooney W. Weakness of the lower continental crust: a condition for delamination, uplift, and escape[J]. Tectonophysics, 1998, 296: 47-60. doi: 10.1016/S0040-1951(98)00136-X |
[37] | Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Tectonophysics, 2003, 369(3): 155-174. |
[38] | Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9 |
[39] | Miniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
[40] | Niu Y Z, Shi G R, Ji W H, et al. Paleogeographic evolution of a Carboniferous–Permian sea in the southernmost part of the Central Asian Orogenic Belt, NW China: Evidence from microfacies, provenance and paleobiogeography[J]. Earth-Science Reviews, 2021, 220: 103738. doi: 10.1016/j.earscirev.2021.103738 |
[41] | Peccerillo A, Taylor S R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745 |
[42] | Safonova I, Maruyama S. Asia: a frontier for a future supercontinent Amasia[J]. International Geology Review, 2014, 56(9): 1051-1071. doi: 10.1080/00206814.2014.915586 |
[43] | Sengör A C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-306. doi: 10.1038/364299a0 |
[44] | Shu L S, Zhu W B, Wang B, et al. The post-collision intracontinental rifting and olistostrome on the southern slope of Bogda Mountains, Xinjiang[J]. Acta Petrologica Sinica, 2005, 21(1): 25-36. |
[45] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[46] | Tang G J, Chung S L, Hawkesworth C J, et al. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China[J]. Earth and Planetary Science Letters, 2017, 464:142-154. |
[47] | Wainwright A J, Tosdal R M, Wooden J L, et al. U–Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern Mongolia[J]. Gondwana Research, 2011, 19(3): 764-787. doi: 10.1016/j.gr.2010.11.012 |
[48] | Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth Planetary Science Letters, 1983, 64: 295-304. doi: 10.1016/0012-821X(83)90211-X |
[49] | Wei R H, Gao Y F, Xu S C, et al. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 2018, 308-309: 242-261. doi: 10.1016/j.lithos.2018.03.010 |
[50] | Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202 |
[51] | Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022 |
[52] | Windley B F, Xiao W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 2018, 61: 73-87. doi: 10.1016/j.gr.2018.05.003 |
[53] | Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt [J]. Tectonics, 2003, 22(6): 1484-1505. |
[54] | Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. doi: 10.2475/ajs.304.4.370 |
[55] | Xiao W J, Windley B F, Sun S, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 477-507. doi: 10.1146/annurev-earth-060614-105254 |
[56] | Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020 |
[57] | Xu B, Zhao G C, Li J H, et al. Ages and Hf isotopes of detrital zircons from the Permian strata in the Bengbatu are (Inner Mongolia) and tectonic implications[J]. Geoscience Frontiers, 2019, 10(1): 195-212. doi: 10.1016/j.gsf.2018.08.003 |
[58] | Yang S H, Miao L C, Zhang F C, et al. Detrital zircon age spectra of the Gurvan Sayhan accretionary complex in South Mongolia: Constraints on the Late Paleozoic evolution of the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 175: 213-229. doi: 10.1016/j.jseaes.2018.07.041 |
[59] | Yarmolyuk V V, Kovalenko V I, Sal'nikova E B, et al. Geochronology of igneous rocks and formation of the late Paleozoic south Mongolian active margin of the Siberian continent[J]. Stratigraphy and Geological Correlation, 2008a, 16(2): 162-181. doi: 10.1134/S0869593808020056 |
[60] | Yarmolyuk V V, Kovalenko V I, Kozlovsky A M, et al. Crust-forming processes in the Hercynides of the Central Asian Foldbelt[J]. Petrology, 2008b, 16(7): 679-709. doi: 10.1134/S0869591108070035 |
[61] | Yarmolyuk V V, Kuzmin M I, Kozlovsky A M. Late Paleozoic-Early Mesozoic Within Plate Magmatism in North Asia: Traps, Rifts, Giant Batholiths, and the Geodynamics of Their Origin[J]. Petrology, 2013, 21(2): 115-142. |
[62] | Yarmolyuk V V, Kozlovsky A M, Travin A V. Late Paleozoic anorogenic magmatism in Southern Mongolia: Evolutionary stages and structural control[J]. Doklady Earth Sciences, 2017, 475(1): 753-757. doi: 10.1134/S1028334X17070200 |
[63] | Zhang D H, Huang B C, Zhao G C, et al. Quantifying the extent of the Paleo-Asian Ocean during the Late Carboniferous to Early Permian[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094498. |
[64] | Zhang S H, Zhao Y, Liu J M, et al. Different sources involved in generation of continental arc volcanism: The Carboniferous–Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 2016, 240-243: 382-401. doi: 10.1016/j.lithos.2015.11.027 |
[65] | Zhang X H, Yuan L L, Xue F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1), 311-327. doi: 10.1016/j.gr.2014.02.011 |
[66] | Zhang Y Y, Sun M, Yuan C, et al. Alternating Trench Advance and Retreat: Insights from Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt[J]. Tectonics, 2018, 37: 2142-2164. doi: 10.1029/2018TC005051 |
[67] | Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003 |
[68] | Zhou H, Zhao G C, Han Y G, et al. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc[J]. Lithos, 2018, 314-315: 119-139. doi: 10.1016/j.lithos.2018.05.020 |
[69] | Zhou H, Zhao G C, Li J H, et al. Magmatic evidence for middle-late Permian tectonic evolution on the northern margin of the North China Craton[J]. Lithos, 2019, 336-337: 125-142. doi: 10.1016/j.lithos.2019.04.002 |
[70] | Zhou H, Zhao G C, Han Y G, et al. The Late Carboniferous to Early Permian high silica magmatism in the Southern Mongolia: Implications for tectonic evolution and continental growth[J]. Gondwana Research, 2021a, 97: 34-50. doi: 10.1016/j.gr.2021.05.005 |
[71] | Zhou H, Zhao G C, Han Y G, et al. Magmatic evidence for Late Carboniferous-Early Permian slab breakoff and extension of the southern Mongolia collage system in Central Asia[J]. Gondwana Research, 2021b, 89: 105-118. doi: 10.1016/j.gr.2020.09.006 |
[72] | Zhou H, Zhao G C, Han Y G, et al. Carboniferous slab-retreating subduction of backarc oceans: the final large-scale lateral accretion of the southern Central Asian Orogenic Belt[J]. Science Bulletin, 2022, 67(13): 1388-1398. doi: 10.1016/j.scib.2022.05.002 |
[73] | Zhou H, Zhao G C, Han Y G, et al. The early Permian high-temperature felsic magmatism induced by slab breakoff in Southern Mongolia, Central Asian Orogenic Belt and its tectonic implications[J]. Lithos, 2023, 442-443: 107083. doi: 10.1016/j.lithos.2023.107083 |
[74] | Zhu M S, Baatar M, Miao L C, et al. Zircon ages and geochemical compositions of the Manlay ophiolite and coeval island arc: Implications for the tectonic evolution of South Mongolia[J]. Journal of Asian Earth Sciences, 2014, 96(15): 108-122. |
[75] | Zhu M S, Miao L C, Baatar M, et al. Late Paleozoic magmatic record of Middle Gobi area, South Mongolia and its implications for tectonic evolution: Evidences from zircon U–Pb dating and geochemistry[J]. Journal of Asian Earth Sciences, 2016, 115: 507-519. doi: 10.1016/j.jseaes.2015.11.002 |
Geological map of Central Asian Orogenic Belt
Tectonic stratigraphy of Mongolia
Stratigraphic columns of main tectonic units of the Southern Mongolia
(a) TAS diagram and (b) K2O-SiO2 diagram of Carboniferous-Early Permian rocks in Southern Mongolia
(a) A/NK-A/CNK diagram and (b) Rb- (Y+Nb) diagram of Carboniferan-Early Permian rocks in Southern Mongolia
(a) Distribution patterns of rare earth elements and (b) trace elements in Carboniferous and Early Permian rocks in Southern Mongolia
(a) zircon ƐHf(t)-t diagram and (b) ƐNd(t)-(87Sr/ 86Sr)i diagram of Carboniferous-Early Permian rocks in South Mongolia area
Schematic diagram of non-orogenic magmatic activities in Southern Mongolia
Two-dimensional model of magnetotelluric impedance in Southern Mongolia
Late Carboniferous-Early Permian tectonic evolution of the southern Mongolia in the Central Asian orogenic Belt