2024 Vol. 57, No. 3
Article Contents

YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, LI Hai, TONG Lili. 2024. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt. Northwestern Geology, 57(3): 1-10. doi: 10.12401/j.nwg.2023060
Citation: YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, LI Hai, TONG Lili. 2024. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt. Northwestern Geology, 57(3): 1-10. doi: 10.12401/j.nwg.2023060

Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt

  • Ophiolite is a major material for studying of ancient oceans and important lithological evidence for delineating ancient plate boundaries. It records valuable information from the initial formation of the oceanic lithosphere to the final closure of the ocean basin, and is also a key geological target for studying the ocean–continent transition process. The Darbut ophiolite in West Junggar is one of the largest and most typical ophiolites exposed in northern Xinjiang. A series of new advances have been achieved in recent years: ① Diamonds and other exotic minerals have been recovered from chromitites of the Sartohay ophiolites, thus challenging the previous theory of shallow chromitite genesis. ② Fore–arc basalts have been identified in the ophiolite, which is one of the geological records of subduction initiation. ③ Ancient seamount material components have been recognized in the ophiolite, in which the basalt show OIB characteristics. ④ Sartohay chromitite is the result of deep mantle pre–enrichment and shallow re–enrichment. ⑤ A formation environment mainly associated with a subduction–related tectonic setting, with the involvement of the mantle plume, has been suggested. Despite progresses mentioned above, some new scientific issues and research directions have emerged, mainly concerning deep mantle mass recycling processes, subduction initiation mechanisms, crustal growth processes, and subduction zone ophiolite genesis.

  • 加载中
  • [1] 敖松坚, 肖文交, 韩春明, 等. 中亚造山带南缘蛇绿岩研究现状与展望[J]. 地球科学, 2022, 47(9): 3107-3126 doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002

    CrossRef Google Scholar

    AO Songjian, XIAO Wenjiao, HAN Chunming, et al. Status and prospect of research on ophiolites in the southern margin of the Central Asian Orogenic Belt[J]. Earth Science, 2022, 47(9): 3107-3126. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002

    CrossRef Google Scholar

    [2] 鲍佩声, 王希斌, 郝梓国, 等. 对富铝型豆荚状铬铁矿矿床成因的新认识——以新疆萨尔托海铬铁矿矿床为例[J]. 矿床地质, 1990, 9(2): 3-17.

    Google Scholar

    BAO Peisheng, WANG Xibin, HAO Ziguo, et al. A new idea about the genesis of the aluminium rich podiform chromite deposit—with theSartuohai chromite deposit of Xinjiang as an example[J]. Mineral Deposits, 1990, 9(2): 97-111.

    Google Scholar

    [3] 鲍佩声, 王希斌, 彭根永, 等. 新疆西准噶尔重点含铬岩体成矿条件及找矿方向的研究[A]. 中国地质科学院地质研究所文集[C]. 1992, 24: 1−177

    Google Scholar

    BAO Peisheng, WANG Xibin, PENG Genyong, et al. Study on mineralization constraints and assessment of ore potential of main chrome-bearing rock bodies in western Junggar[A]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences[C]. 1992, 24: 1−177.

    Google Scholar

    [4] 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761 doi: 10.3969/j.issn.1671-2552.2009.12.008

    CrossRef Google Scholar

    BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—questioning about the rock/melt interaction metallogeny[J]. Chinese Journal of Geology, 2009, 28(12): 1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008

    CrossRef Google Scholar

    [5] 高俊, 江拓, 王信水, 等. 准噶尔—天山—北山蛇绿岩: 对中亚造山带西南缘洋陆格局演化的制约[J]. 地质科学, 2022, 57(1): 1-42 doi: 10.12017/dzkx.2022.001

    CrossRef Google Scholar

    GAO Jun, JIANG Tuo, WANG Xinshui, et al. The Junggar, Tianshan and Beishan ophiolites: Constraint on the evolution of oceanic and continental framework along the southwestern margin of the Central-Asian Orogenic Belt[J]. Chinese Journal of Geology, 2022, 57(1): 1-42. doi: 10.12017/dzkx.2022.001

    CrossRef Google Scholar

    [6] 辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 25(6): 1364-1372

    Google Scholar

    GU Pingyang, LI Yongjun, ZHANG Bing, et al. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Sinica, 2009, 25: 1364-1372.

    Google Scholar

    [7] 郝梓国, 王希斌, 鲍佩声. 造山带中富集型上地幔的成因——以萨尔托海蛇绿岩块为例[J]. 中国地质科学院院报, 1991(01): 159-166

    Google Scholar

    HAO Ziguo, WANG Xibin, BAO Peisheng. Genesis of enriched upper mantle in orogenic zone—a case stufy of the Saertuohai ophiolitic block[J]. Bulletin of the Chinese Academy of Geological Sciences, 1991(01): 159-166.

    Google Scholar

    [8] 李海, 李永军, 徐学义, 等. 西准噶尔达尔布特蛇绿岩带萨尔托海岩体深部结构、构造特征: 地质与地球物理证据[J]. 大地构造与成矿学, 2021, 45(4): 634-650

    Google Scholar

    LI Hai, LI Yongjun, XU Xueyi, et al. Deep structure and tectonic of Sartohay ophiolite in West Junggar, Xinjiang: New geological and geophysical evidence[J]. Geotectonica et Metallogenia, 2021, 45(4): 634-650.

    Google Scholar

    [9] 雷敏, 赵志丹, 侯青叶, 等. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比[J]. 岩石学报, 2008, 24(4): 661-672

    Google Scholar

    LEI Min, ZHAO Zhidan, HOU Qinye, et al. Geochemical and Sr-Nd-Pb isotopic characteristics of the dalabute ophiolite, Xinjiang: Comparison between the paleo-Asian ocean and the Tethyan mantle domains[J]. Acta Petrologica Sinica, 2008, 24(4): 661-672.

    Google Scholar

    [10] 李行, 巩志超, 董显扬, 等. 新疆西准噶尔地区基性超基性岩生成地质背景及区域成矿特征[J]. 中国地质科学院西安地质矿产研究所所刊, 1987, 8(4): 3-140

    Google Scholar

    LI Hang, GONG Zhichao, DONG Xianyang, et al. On the geological setting of basic and ultrabasic rocks and the characteristics of regional metallization (mainly chromite) in the West Junggar of Xinjiang, China[J]. Bulletin of Xi`an Institute of Geology, Chinese Academy of Geological Sciences, 1987, 8(4): 3-140.

    Google Scholar

    [11] 刘希军, 许继峰, 王树庆, 等. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义[J]. 岩石学报, 2009, 25(6): 1373-1389

    Google Scholar

    LIU Xijun, XU Jifeng, WANG Shuqing, et al. Geochemistry and dating of E-MORB type rocks from Darbute ophiolite in West Junggar, Xinjiang and geological implications[J]. Acta Petrologica Sinca, 2009, 25(6): 1373-1389.

    Google Scholar

    [12] 马中平, 夏林圻, 夏祖春, 等. 蛇绿岩年代学研究方法及应注意的问题[J]. 西北地质, 2004, 37(3): 103−108.

    Google Scholar

    MA Zhongping, XIA Linqi, XIA Zuchun, et al. Method of ophiolite geochronology study and the related problems[J]. Northwestern Geology, 2004, 37(3): 103−108.

    Google Scholar

    [13] 史仁灯. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 2005, 51(6): 681-693 doi: 10.3321/j.issn:0371-5736.2005.06.010

    CrossRef Google Scholar

    SHI Rendeng. Comment on the progress in and problems on ophiolite study[J]. Geological Review, 2005, 51(6): 681-693. doi: 10.3321/j.issn:0371-5736.2005.06.010

    CrossRef Google Scholar

    [14] 田亚洲, 杨经绥, 杨华燊, 等. 新疆萨尔托海铬铁矿中铂族矿物及硫化物特征[J]. 地质学报, 2019, 93(10): 2639-2655 doi: 10.3969/j.issn.0001-5717.2019.10.016

    CrossRef Google Scholar

    TIAN Yazhou, YANG Jingsui, YANG Huashen, et al. The characteristics of PGE and BMS in Sartohay chromitites, Xinjiang[J]. Acta Geologica Sinica, 2019, 93(10): 2639-2655. doi: 10.3969/j.issn.0001-5717.2019.10.016

    CrossRef Google Scholar

    [15] 田亚洲, 杨经绥, 张仲明, 等. 新疆萨尔托海高铝铬铁矿中异常矿物群的发现及意义[J]. 岩石学报, 2015(12): 3650-3662

    Google Scholar

    TIAN Yazhou, YANG Jingsui, ZHANG Zhongming, et al. Discovery and implication of unusual mineral group from Sarthay high-Al chromitites, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(12): 3650-3662.

    Google Scholar

    [16] 田亚洲, 杨经绥. 萨尔托海铬铁矿中的矿物包体研究[J]. 地质学报, 2016(11): 3114-3128

    Google Scholar

    TIAN Yazhou, YANG Jingsui. Study on the mineral Inclusions in Sartohay chromitites[J]. Acta Geologica Sinica, 90(11): 3114-3128.

    Google Scholar

    [17] 王国灿, 张攀. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示[J]. 地球科学, 2019, 44(5): 1688-1704

    Google Scholar

    WANG Guocan, ZHANG Pan. A new understanding on the emplacement of ophiolitic mélanges and its tectonic significance: Insights from the structural analysis of the remnant oceanic basin-type ophiolitic mélanges[J]. Earth Science, 2019, 44(5): 1688-1704.

    Google Scholar

    [18] 吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325

    Google Scholar

    WU Fuyuan, LIU Chuanzhou, ZHANG Liangliang, et al. Yarlung Zangbo ophiolite: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325.

    Google Scholar

    [19] 肖序常. 从扩张速率试论蛇绿岩的类型划分[J]. 岩石学报, 1995, 11(增刊): 10-23 doi: 10.3321/j.issn:1000-0569.1995.z1.002

    CrossRef Google Scholar

    XIAO Xuchang. Discussion on the classification of ophiolite by spreadding rate[J]. Acta Petrologica Sinica, 1995, 11(suppl. ): 10-23. doi: 10.3321/j.issn:1000-0569.1995.z1.002

    CrossRef Google Scholar

    [20] 杨经绥, 徐向珍, 张仲明, 等. 蛇绿岩型金刚石和铬铁矿深部成因[J]. 地球学报, 2013, 34(6): 643-653. ,

    Google Scholar

    YANG Jingsui, XU Xaingzhen, ZHANG Zhongming, et al. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientica Sinica, 2013, 34(6): 643-653.

    Google Scholar

    [21] 杨经绥, 徐向珍, 白文吉, 等. 蛇绿岩型金刚石的特征[J]. 岩石学报, 2014, 30(8): 2113-2124

    Google Scholar

    YANG JingSui, XU XiangZhen, BAI WenJi, et al. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 2014, 30(8): 2113-2124.

    Google Scholar

    [22] 杨经绥, 连东洋, 吴魏伟, 等. 俯冲物质深地幔循环——地球动力学研究的一个新方向[J]. 地质学报, 2021, 95(1): 42-63 doi: 10.19762/j.cnki.dizhixuebao.2021038

    CrossRef Google Scholar

    YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Recycling of subducted crust in deep mantle: a new research orientation to earth dynamics[J]. Acta Geologica Sinica, 2021, 95(1): 42-63. doi: 10.19762/j.cnki.dizhixuebao.2021038

    CrossRef Google Scholar

    [23] 杨经绥, 连东洋, 吴魏伟, 等. 蛇绿岩中铬铁矿研究的问题与思考[J]. 地质学报, 2022, 96(5): 1608-1634 doi: 10.3969/j.issn.0001-5717.2022.05.007

    CrossRef Google Scholar

    YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Chromitites in ophiolites: questions and thoughts[J]. Acta Geologica Sinica, 2022, 96(5): 1608-1634. doi: 10.3969/j.issn.0001-5717.2022.05.007

    CrossRef Google Scholar

    [24] 臧遇时, 杨高学, 赵金凤. 蛇绿岩的定义、分类及其发展[J]. 西北地质, 2013, 46(2): 12−17.

    Google Scholar

    ZANG Yushi, YANG Gaoxue, ZHAO Jinfeng. The Definition, Classification and Development of Ophiolites[J]. Northwestern Geology, 2013, 46(2): 12−17.

    Google Scholar

    [25] 翟庆国, 高俊, 宋述光. 中国蛇绿岩与造山带大地构造研究: 前言[J]. 岩石学报, 2019, 35(10): 2943-2947 doi: 10.18654/1000-0569/2019.10.01

    CrossRef Google Scholar

    ZHAI QingGuo, GAO Jun, SONG ShuGuang. New progress in ophiolite and tectonics of China: Preface[J]. Acta Petrologica Sinica, 2019, 35(10): 2943-2947. doi: 10.18654/1000-0569/2019.10.01

    CrossRef Google Scholar

    [26] 张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1): 1-12 doi: 10.3969/j.issn.1671-2552.2012.01.001

    CrossRef Google Scholar

    ZHANG Jin, DENG Jinfu, XIAO Qinghui, et al. New advances in the study of ophiolites[J]. Geological Bulletin of China, 2012, 31(1): 1-12. doi: 10.3969/j.issn.1671-2552.2012.01.001

    CrossRef Google Scholar

    [27] 张继恩, 陈艺超, 肖文交, 等. 蛇绿岩与蛇绿混杂带结构[J]. 地质科学, 2021, 56(2): 560-595 doi: 10.12017/dzkx.2021.029

    CrossRef Google Scholar

    ZHANG Ji'en, CHEN Yichao, XIAO Wenjiao, et al. Architecture of ophiolite and ophiolitic mélange[J]. Chinese Journal of Geology, 2021, 56(2): 560-595. doi: 10.12017/dzkx.2021.029

    CrossRef Google Scholar

    [28] 张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39.

    Google Scholar

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.

    Google Scholar

    [29] 朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2): 225-237.

    Google Scholar

    ZHU Dicheng, MO Xuanxue, WANG Liquan, et al. Hotspot-ridge interaction for the evolution of Neo-Tethys: insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet[J]. Acta Petrologica Sinica, 2008, 24(2): 225-237

    Google Scholar

    [30] Arai S, Miura M. Formation and modification of chromitites in the mantle[J]. Lithos, 2016, 264: 277-295. doi: 10.1016/j.lithos.2016.08.039

    CrossRef Google Scholar

    [31] Bai W J, Zhou M F, Robinson P T. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 1993, 30(8): 1650-1659. doi: 10.1139/e93-143

    CrossRef Google Scholar

    [32] Buchs D M, Arculus R J, Baumgartner P O, et al. Oceanic intraplate volcanoes exposed: example from seamounts accreted in Panama[J]. Geology, 2011, 39: 335-338.

    Google Scholar

    [33] Buckman S, Aitchison J C. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China[C]. Aspects of the Tectonic Evolution of China. Geological Society of London Special Publication, 2004, 226: 101-129.

    Google Scholar

    [34] Chen S, Pe-Piper G, Piper D J W, et al. Ophiolitic mélanges in crustal-scale fault zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China[J]. Tectonics, 2014, 33: 2419-2443. doi: 10.1002/2013TC003488

    CrossRef Google Scholar

    [35] Choulet F, Faure M, Cluzel D, et al. From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China[J]. Gondwana Research, 2012, 21: 530-547. doi: 10.1016/j.gr.2011.07.015

    CrossRef Google Scholar

    [36] Coleman R G. Ophiolites[M]. Springer, Berlin, Heidelberg, New York, 1977, 1-220.

    Google Scholar

    [37] Dai J G, Wang C S, Polat A, et al. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172-173: 1-16. doi: 10.1016/j.lithos.2013.03.011

    CrossRef Google Scholar

    [38] Dickey J S. A hypothesis of origin for podiform chromite deposits[J]. Geochimica et Cosmochimica Acta, 1975, 39(6): 1061-1074.

    Google Scholar

    [39] Dilek Y, Furnes H. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J]. Lithos, 2009, 113: 1-20. doi: 10.1016/j.lithos.2009.04.022

    CrossRef Google Scholar

    [40] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123: 387-411. doi: 10.1130/B30446.1

    CrossRef Google Scholar

    [41] Dilek Y, Furnes H. Ophiolites and their origins[J]. Elements, 2014, 10: 93-100. doi: 10.2113/gselements.10.2.93

    CrossRef Google Scholar

    [42] Du H Y, Chen J F, Ma X, et al. Origin and tectonic significance of the Hoboksar ophiolitic mélange in northern West Junggar (NW China)[J]. Lithos, 2019, 336-337: 293-309. doi: 10.1016/j.lithos.2019.04.010

    CrossRef Google Scholar

    [43] Duncan R A, Keller R A. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): 1-13.

    Google Scholar

    [44] Feng Y M, Coleman R G, Tilton G R, et al. Tectonic evolution of the West Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8: 729-752. doi: 10.1029/TC008i004p00729

    CrossRef Google Scholar

    [45] Hofmann A, Jochum K. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project[J]. Journal of Geophysical Research, 1996, 101: 831-839.

    Google Scholar

    [46] Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103-255.

    Google Scholar

    [47] Huang Z, Yang J S, Zhu Y W, et al. The study of deep mineral association in chromitites of the Hegenshan ophiolite, Inner Mongolia, China[J]. Acta Geologica Sinica, 2015, 89(z2): 30-31.

    Google Scholar

    [48] Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306: 229-240. doi: 10.1016/j.jpgl.2011.04.006

    CrossRef Google Scholar

    [49] Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh, 2000, 91: 181-193. doi: 10.1017/S0263593300007367

    CrossRef Google Scholar

    [50] Li H, Li Y J, Yang G X, et al. Prospecting for ophiolite-type chromite deposit in Sartohay, West Junggar (NW China): Constraints from geological and geophysical data[J]. Ore GeologyReviews, 2023, 156: 105379. doi: 10.1016/j.oregeorev.2023.105379

    CrossRef Google Scholar

    [51] Li H Y, Zhao R P, Li J, et al. Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc [J]. Nature Communications, 2021, 12(1): 6015. doi: 10.1038/s41467-021-26322-8

    CrossRef Google Scholar

    [52] Lian D Y, Yang J S. Ophiolite-hosted diamond: a new window for probing carbon cycling in the deep mantle[J]. Engineering, 2019, 5: 406-420. doi: 10.1016/j.eng.2019.02.006

    CrossRef Google Scholar

    [53] Liu Y J, Xiao W J, Ma Y F, et al. Oroclines in the Central Asian Orogenic Belt[J]. National Science Review, 2023, 10: nwac243. doi: 10.1093/nsr/nwac243

    CrossRef Google Scholar

    [54] Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0

    CrossRef Google Scholar

    [55] Nicolas A, Boudier F. Where ophiolites come from and what they tell us[J]. Geological Society of America Special Papers, 2003, 373: 137-152.

    Google Scholar

    [56] O'Connor J M, Duncan R A. Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate motions over plumes[J]. Journal of Geophysical Research, 1990, 95(B11): 17475-17502 doi: 10.1029/JB095iB11p17475

    CrossRef Google Scholar

    [57] O'Neill C, Müller D, Steinberger B. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 2003, 215: 151-168. doi: 10.1016/S0012-821X(03)00368-6

    CrossRef Google Scholar

    [58] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[A]. Marginal basin geology[C]. London: Blackwell Scientific Publications, 1984: 77−94.

    Google Scholar

    [59] Qiu T, Zhu Y F. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry[J]. Lithos, 2018, 302-303: 427-446. doi: 10.1016/j.lithos.2018.01.029

    CrossRef Google Scholar

    [60] Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03X12.

    Google Scholar

    [61] Reagan M K, Mcclelland W C, Girard G, et al. The geology of the southern Mariana Fore-Arc crust: implications for the scale of Eocene volcanism in the Western Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 41-51. doi: 10.1016/j.jpgl.2013.08.013

    CrossRef Google Scholar

    [62] Rui H C, Yang J S, Lian D Y, et al. Deep origin of mantle peridotites from the Aladağ ophiolite, Turkey: Implication from trace element geochemistry of pyroxenes and mineralogy of ophiolitic diamonds[J]. Journal of Asian Earth Sciences, 2022, 228: 105153. doi: 10.1016/j.jseaes.2022.105153

    CrossRef Google Scholar

    [63] Safonova I Y, Santosh M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25: 126-158. doi: 10.1016/j.gr.2012.10.008

    CrossRef Google Scholar

    [64] Sengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [65] Shen P, Pan H D, Cao C, et al. The formation of the Suyunhe large porphyry Mo deposit in the West Junggar terrain, NW China: zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic results[J]. Ore Geology Reviews, 2017, 81: 808-828. doi: 10.1016/j.oregeorev.2016.02.015

    CrossRef Google Scholar

    [66] Shervais J W, Reagan M K, Haugen E, et al. Magmatic response to subduction initiation: part 1. fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 314-338. doi: 10.1029/2018GC007731

    CrossRef Google Scholar

    [67] Shervais J W, Reagan M K, Godard M, et al. Magmatic response to subduction initiation, Part II: boninites and related rocks of the Izu-Bonin arc from IODP expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2020GC009093.

    Google Scholar

    [68] Shi R D, Griffin W L, O`Reilly S Y, et al. Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China[J]. Precambrian Research, 2012, 1: 87-94.

    Google Scholar

    [69] Taylor R N, Nesbitt R W, Vidal P, et al. Mineralogy, chemistry, and genesis of the boninite series volcanics, chichijima, bonin islands, Japan[J]. Journal of Petrology, 1994, 35: 577-617. doi: 10.1093/petrology/35.3.577

    CrossRef Google Scholar

    [70] Tian Y Z, Yang J S, Robinson P T, et al. Diamond discovered in high-al chromitites of the Sartohay ophiolite, Xinjiang Province, China[J]. Acta Geologica Sinica, 2015, 89(2): 332-340. doi: 10.1111/1755-6724.12433

    CrossRef Google Scholar

    [71] Wakabayashi J, Dilek Y. What constitutes‘emplacement’of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles[J]. Geological Society, London, Special Publications, 2003, 218: 427⁃447.

    Google Scholar

    [72] Wang T, Tong Y, Xiao W J, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National Science Review, 2022, 9: nwab210. doi: 10.1093/nsr/nwab210

    CrossRef Google Scholar

    [73] Wang T, Tong Y, Huang H, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023a, 237: 104298. doi: 10.1016/j.earscirev.2022.104298

    CrossRef Google Scholar

    [74] Wang T, Huang H, Zhang J J, et al. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 2023b, 10: nwac283. doi: 10.1093/nsr/nwac283

    CrossRef Google Scholar

    [75] Wang Z H, Sun S, Li J L, et al. , Petrogenesis of tholeiite associations in Kudi ophiolite (western Kunlun Mountains, northwestern China): implications for the evolution of back-arc basins[J]. Contributions to Mineralogy and Petrology, 2002, 143: 471-483. doi: 10.1007/s00410-002-0358-5

    CrossRef Google Scholar

    [76] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [77] Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three collage systems in the permian-middle Triassic in Central Asia: oroclines, sutures and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [78] Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [79] Xiao W J, Song D F, Windley B F, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2020, 63: 329-361. doi: 10.1007/s11430-019-9524-6

    CrossRef Google Scholar

    [80] Xiong F H, Yang J S, Robinson P T, et al. Diamonds discovered from high–Cr podiform chromitites of Bulqiza, eastern Mirdita ophiolite, Albania[J]. Acta Geologica Sinica, 2017, 91(2): 455-468. doi: 10.1111/1755-6724.13111

    CrossRef Google Scholar

    [81] Xu X Z, Yang J S, Robinson P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015, 27: 686-700. doi: 10.1016/j.gr.2014.05.010

    CrossRef Google Scholar

    [82] Yan Q S, Castillo P, Shi X F, et al. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications[J]. Lithos, 2015, 218-219: 117-126. doi: 10.1016/j.lithos.2014.12.023

    CrossRef Google Scholar

    [83] Yang G X. Subduction initiation triggered by collision: A review based on examples and models[J]. Earth-Science Reviews, 2022, 232: 104129. doi: 10.1016/j.earscirev.2022.104129

    CrossRef Google Scholar

    [84] Yang G X, Li Y J, Santosh M, et al. A Neoproterozoic seamount in the Paleoasian Ocean: evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China[J]. Lithos, 2012a, 140-141: 53-65. doi: 10.1016/j.lithos.2012.01.026

    CrossRef Google Scholar

    [85] Yang G X, Li Y J, Gu P Y, et al. Geochronological and geochemical study of the Darbut Ophiolitic complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2012b, 21: 1037-1049. doi: 10.1016/j.gr.2011.07.029

    CrossRef Google Scholar

    [86] Yang G X, Li Y J, Santosh M, et al. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean[J]. Journal of Asian Earth Sciences, 2012c, 59: 141-155. doi: 10.1016/j.jseaes.2012.07.020

    CrossRef Google Scholar

    [87] Yang G X, Li Y J, Santosh M, et al. Geochronology and Geochemistry of Basalts from the Karamay Ophiolitic Mélange in West Junggar (NW China): Implications for Devonian-Carboniferous Intra-oceanic Accretionary Tectonics of the Southern Altaids[J]. Geological Society of America Bulletin, 2013, 125: 401-419. doi: 10.1130/B30650.1

    CrossRef Google Scholar

    [88] Yang G X, Li Y J, Xiao W J, et al. OIB-type rocks within West Junggar ophiolitic mélanges: evidence for the accretion of seamounts[J]. Earth-Science Reviews, 2015a, 150: 477-496. doi: 10.1016/j.earscirev.2015.09.002

    CrossRef Google Scholar

    [89] Yang G X, Li Y J, Tong L L, et al. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 179: 385-398. doi: 10.1016/j.jseaes.2019.04.011

    CrossRef Google Scholar

    [90] Yang G X, Li Y J, Tong L L, et al. An Early Cambrian plume-induced subduction initiation event within the Junggar Ocean: Insights from ophiolitic mélanges, arc magmatism, and metamorphic rocks[J]. Gondwana Research, 2020b, 88: 45-66. doi: 10.1016/j.gr.2020.07.002

    CrossRef Google Scholar

    [91] Yang G X, Li Y J, Tong L L, et al. Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo-Asian Ocean[J]. Geosystems and geoenvironment, 2022, 1: 100009. doi: 10.1016/j.geogeo.2021.10.004

    CrossRef Google Scholar

    [92] Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015b, 27: 459-485. doi: 10.1016/j.gr.2014.07.004

    CrossRef Google Scholar

    [93] Yang J S, Wu W W, Lian D Y, et al. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth & Environment, 2021, 2: 198-212.

    Google Scholar

    [94] Yang Y Q, Zhao L, Zheng R G, et al. An early Ordovician fossil seamount of the Hongguleleng-Balkybey Ocean in the Northern West Junggar terrane (NW China) and its implications for the ocean evolution[J]. Journal of Asian Earth Sciences, 2020a, 194: 10406.

    Google Scholar

    [95] Yao J L, Cawood P A, Zhao G C. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly[J]. Nature Communications, 2021, 12: 4189. doi: 10.1038/s41467-021-24422-z

    CrossRef Google Scholar

    [96] Zhang C, Zhai M G, Allen B, et al. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia[J]. Journal of Geological Society, 1993, 150: 551-561. doi: 10.1144/gsjgs.150.3.0551

    CrossRef Google Scholar

    [97] Zhang J E, Chen Y C, Xiao W J, et al. Architecture of ophiolitic mélanges in the Junggar region, NW China[J]. Geosystems and Geoenvironment, 2022b, https://doi.org/10.1016/j.geogeo.2022.100175.

    Google Scholar

    [98] Zhang P, Wang G C, Polat A, et al. Geochemistry of mafic rocks and cherts in the Darbut and Karamay ophiolitic mélanges in West Junggar, northwest China: Evidence for a Late Silurian to Devonian back-arc basin system[J]. Tectonophysics, 2018, 745: 395-411. doi: 10.1016/j.tecto.2018.08.018

    CrossRef Google Scholar

    [99] Zhou M F, Robinson P T, Malpas J, et al. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth Sciences, 2001, 19: 517-534. doi: 10.1016/S1367-9120(00)00048-1

    CrossRef Google Scholar

    [100] Zhou M F, RobinsonP T, Su B X, et al. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 2014, 26(1): 262-283. doi: 10.1016/j.gr.2013.12.011

    CrossRef Google Scholar

    [101] Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21. doi: 10.1093/petrology/37.1.3

    CrossRef Google Scholar

    [102] Zhu Q M, Zhu Y F. Platinum-group minerals and Fe–Ni minerals in the Sartohay podiform chromitite (west Junggar, China): Implications for T–pH–fO2–fS2 conditions during hydrothermal alteration[J]. Ore Geology Reviews, 2019, 112: 103020. doi: 10.1016/j.oregeorev.2019.103020

    CrossRef Google Scholar

    [103] Zhu Q M, Zhu Y F. Petrology and geochemistry of ultramafic and mafic rocks in the late Silurian-early Devonian darbut ophiolitic mélange of west Junggar (NORTHWESTERN CHINA): implications for petrogenesis and tectonic evolution[J]. International Geology Review, 2022, 64: 2601-2625. doi: 10.1080/00206814.2021.1995788

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(876) PDF downloads(265) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint