2024 Vol. 57, No. 3
Article Contents

WANG Wenbao, LI Weixing, LEI Congcong, MA Jun, YAN Zhenjun, BO Haijun, DING Haisheng, PENG Yuanzhe. 2024. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications. Northwestern Geology, 57(3): 29-43. doi: 10.12401/j.nwg.2023114
Citation: WANG Wenbao, LI Weixing, LEI Congcong, MA Jun, YAN Zhenjun, BO Haijun, DING Haisheng, PENG Yuanzhe. 2024. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications. Northwestern Geology, 57(3): 29-43. doi: 10.12401/j.nwg.2023114

Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications

More Information
  • Typical igneous rocks during the accretionary orogeny process in the Central Asian Orogenic Belt (CAOB) play a key role in understanding its tectonic evolution. We present new LA-ICP-MS in-situ zircon U-Pb and bulk geochemical data for the Dalunwusu monzogranite and granite porphyry suites which are located in Southernmost CAOB. The Dalunwusu monzogranites, have a crystallization age of (249.0±2.3) Ma, exhibit adakite-like geochemical characteristics, such as high Sr content and low Yb and Y contents, coupled with high Sr/Y values (88.55~140.34) and show a weakly negative Eu anomalies (δEu=0.68~0.98). Geochemical compositions indicate the Dalunwusu monzogranites derived from partial melting of mafic granulite in the lower thickened crust. The Dalunwusu granite porphyrys, have a crystallization age of (241.0±2.8) Ma, show typical geochemical features of A-type granites, which are characterized by having high SiO2, low CaO and MgO content, high FeOT/(FeOT+MgO) and 10000×Ga/Al values. Moreover, the granite porphyrys show trace element features of A-type granites including rich in Zr, Nb, Ta abundances, and high values for Pb, Hf, Rb, K and Th, and low values for Ba, Sr, P, and Ti. Taking into account available data of the regional geological background, we may suggest that the adakites were products through partial melting of the thickened lower crust after the closure of the Paleo-Asian Ocean, and the A-type granite porphyry were likely produced at the tectonic setting of post-collisional phase with crustal extension and thinning. These two typical igneous rocks reflect the shift of geodynamic setting, from an earlier accretionary orogen environment to a later extensional setting during early- middle Triassic.

  • 加载中
  • [1] 陈井胜, 刘正宏, 刘永江, 等. 中亚造山带东段构造演化研究进展: 前言[J]. 岩石学报, 2022, 38(08): 2175-2180 doi: 10.18654/1000-0569/2022.08.01

    CrossRef Google Scholar

    CHEN Jingsheng, LIU Zhenghong, LIU Yongjiang, et al. Recent Progress in the evolution of eastern segment of the Central Asia Orogenic Belt[J]. Acta Petrologica Sinica, 2022, 38(8): 2175-2180. doi: 10.18654/1000-0569/2022.08.01

    CrossRef Google Scholar

    [2] 董玉, 王锶淼, 于倩, 等. 中国东北地区晚古生代构造-岩浆演化历史[J]. 岩石学报, 2022, 38(8): 2249-2268 doi: 10.18654/1000-0569/2022.08.04

    CrossRef Google Scholar

    DONG Yu, WANG Simiao, YU Qian, et al. Late Paleozoic tectonic-magmatic evolution history of the northeastern China[J]. Acta Petrologica Sinica, 2022, 38(8): 2249-2268. doi: 10.18654/1000-0569/2022.08.04

    CrossRef Google Scholar

    [3] 付超,李俊建,张帅,等.中蒙边界地区侵入岩时空分布特征及对构造演化的启示[J].华北地质, 2023, 46(1): 1−19.

    Google Scholar

    FU Chao, LI Junjian, ZHANG Shuai, et al. The temporal and spatial distribution characteristics of intrusive rocks in the border area between China and Mongolia and its implications for tectonic evolution[J]. North China Geology, 2023, 46(1): 1−19.

    Google Scholar

    [4] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3), 465-480 doi: 10.3969/j.issn.1001-1552.2009.03.017

    CrossRef Google Scholar

    JIA Xiaohui, WANG Qiang, TANG Gongjian. A-type Granites: Research Progress and Implications[J]. Geotectonica et Metallogenia, 33(3), 2009, 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    CrossRef Google Scholar

    [5] 雷聪聪, 薄海军, 丁海生, 等. 内蒙古自治区雅干地区白山组火山岩LA-ICP-MS锆石U-Pb年龄及其构造环境[J]. 地质通报, 2023,42(12):2096-2108.

    Google Scholar

    LEI Congcong, BO Haijun, DING Haisheng, et al. LA-ICP-MS zircon U-Pb dating and tectonic setting of volcanic rocks of Baishan Formation in Yagan area, Inner Mongolia Autonomous Region[J]. Geological Bulletin, 2023,42(12):2096-2108.

    Google Scholar

    [6] 李凤春, 侯明兰, 栾日坚, 等. 电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J]. 岩矿测试, 2016, 35(1): 17-23.

    Google Scholar

    LI Fengchun, HOU Minglan, LUAN Rijian, et al. Optimization of Analytical Conditions for LA-ICP-MS and Its Application to Zircon U-Pb Dating[J]. Rock and Mineral Analysis. 2016, 35(1): 17-23

    Google Scholar

    [7] 刘桂萍, 郭瑞清, 魏震, 等. 新疆库鲁克塔格地区古生代花岗质侵入岩全岩Sr-Nd和锆石Hf同位素地球化学特征及其意义[J]. 西北地质, 2021, 54(03): 39-50

    Google Scholar

    LIU Guiping, GUO Ruiqing, WEI Zhen. Geochemical Characteristics and Significance of the Whole Rock Sr-Nd and Zircon Hf Isotopic in the Paleozoic Granite-plutons in Kuruktag, Xinjiang. Northwestern Geology, 2021, 54(03): 39-50.

    Google Scholar

    [8] 刘基, 王丕军, 薄海军. 内蒙古额济纳旗内乔仑恩格次黑云母二长花岗斑岩中锆石的特征及其指示意义[J]. 西北地质, 2020, 53(03): 41-55

    Google Scholar

    LIU Ji, Wang Pijun Bo Haijun. Characteristics and Implications of Zircon in Qiaolun'en'geci Biotite Monzogranite Porphyry in Ejina County, Inner Mongolia[J]. Northwestern Geology, 2020, 53(03): 41-55.

    Google Scholar

    [9] 马军, 雷聪聪, 王文宝, 等. 阿拉善地块北缘雅干地块诸小布和糜棱岩化花岗岩地球化学特征、锆石U-Pb年龄及构造背景研究[J]. 矿物岩石地球化学通报, 2021, 40(06): 1357-1368 doi: 10.19658/j.issn.1007-2802.2021.40.086

    CrossRef Google Scholar

    MA Jun, LEI Congcong, WANG Wenbao, et al. A Study on Geochemistry, Zircon U-Pb Dating and Tectonic Setting of the Zhuxiaobuhe Mylonitized Granite in the Yagan Area of Northern Margin of the Alxa Terrain[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(06): 1357-1368. doi: 10.19658/j.issn.1007-2802.2021.40.086

    CrossRef Google Scholar

    [10] 邵积东. 内蒙古地质构造单元划分及存在的有关问题[J]. 西部资源, 2016, 3: 84-87/150. doi: 10.16631/j.cnki.cn15-1331/p.2016.03.030

    CrossRef Google Scholar

    SHAO Jidong. Division of geological tectonic units of Inner Mongolia and related problems[J]. Westrn Resources, 2016. 3: 84-87/150. doi: 10.16631/j.cnki.cn15-1331/p.2016.03.030

    CrossRef Google Scholar

    [11] 邵济安, 唐克东, 何国琦. 内蒙古早二叠世构造古地理的再造[J]. 岩石学报, 2014, 30(7): 1858–1866

    Google Scholar

    SHAO Jian, TANG Kedong, HE Guoqi. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China[J]. Acta Petrologica Sinica, 2014, 30(7): 1858–1866.

    Google Scholar

    [12] 舍建忠, 贾健, 金成, 等. 西准噶尔谢米斯台山中段晚石炭世A型花岗岩地球化学特征及岩石成因[J]. 地质通报, 2023, 42(7): 1051−1068.

    Google Scholar

    SHE Jianzhong, JIA Jian, JIN Cheng, et al. Geochemical characteristics and petrogenesis of Late Carboniferous A-type granites in the middle section of Xiemisitai Mountain, West Junggar[J]. Geological Bulletin of China, 2023, 42(7): 1051−1068.

    Google Scholar

    [13] 宋博, 张慧元, 魏东涛, 等. 中亚造山带南缘中-新元古代地壳的揭示——来自北山—阿拉善北部钻遇碱性花岗岩的年代学和Hf 同位素示踪研究[J]. 地球学报, 2021, 42(1): 9-20 doi: 10.3975/cagsb.2020.071901

    CrossRef Google Scholar

    SONG Bo, ZHANG Huiyuan, WEI Dongtao, et al. Revelation of the Meso–Neoproterozoic Crust on the Southern Margin of the Central Asian Orogenic Belt: Chronology and Hf Isotope Tracer from Drilling-intersected Alkaline Granites, Northern Beishan-Alxa[J]. Acta Geoscientica Sinica, 2021, 42(1): 9-20. doi: 10.3975/cagsb.2020.071901

    CrossRef Google Scholar

    [14] 王丕军. 额济纳旗乔仑恩格次花岗岩特征及构造环境研究[D]. 北京: 中国地质大学(北京), 2018

    Google Scholar

    WANG Pijun. Characteristics and Tectonic Environment of Qiaolunengeci Granite in Ejina County[D]. Beijing: China University of Geosciences(Beijing), 2018.

    Google Scholar

    [15] 王廷印, 王金荣, 王士政, 等. 华北板块和塔里木板块之关系[J]. 地质学报, 1993, 67(4): 287-300 doi: 10.19762/j.cnki.dizhixuebao.1993.04.001

    CrossRef Google Scholar

    WANG Tingyin, WANG Jinrong, WANG Shizheng, et al. Relationships between the North China and Tarim Plates[J]. Acta Geologica Sinica, 1993, 67(4): 287-300. doi: 10.19762/j.cnki.dizhixuebao.1993.04.001

    CrossRef Google Scholar

    [16] 王元元, 杨小强, 阿种明, 等. 新疆西准噶尔沙勒克腾地区花岗岩锆石U-Pb年龄、地球化学特征及其对后碰撞构造环境的约束[J]. 地质通报, 2023, 42(4): 600−615.

    Google Scholar

    WANG Yuanyuan, YANG Xiaoqiang, A Zhongming, et al. Zircon U-Pb age, geochemistry of granites in Shaleketeng area, West Junggar, Xinjiang and its constraints on the post-collision tectonic environment[J]. Geological Bulletin of China, 2023, 42(4): 600−615.

    Google Scholar

    [17] 王振义, 李钢柱, 丁海生, 等. 内蒙古额济纳旗雅干地区北山岩群的厘定及其地质意义[J]. 地球科学, 2022, 47(4): 1177-1193 doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204003

    CrossRef Google Scholar

    WANG Zhenyi, LI Gangzhu, DING Haisheng, et al. Determination and Geological Significance of Beishan Group in Yagan Area, Ejiana, Inner Mongolia[J]. Earth Science, 2022, 47(4): 1177-1193. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204003

    CrossRef Google Scholar

    [18] 吴泰然, 何国琦. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 1993, 67(2): 97-108. doi: 10.19762/j.cnki.dizhixuebao.1993.02.001

    CrossRef Google Scholar

    WU Tairan, HE Guoqi. Tectonic units and their fundamental characteristics on the northern margin of the Alxa Block[J]. Acta Geologica Sinica, 1993, 67(2), 97-108. doi: 10.19762/j.cnki.dizhixuebao.1993.02.001

    CrossRef Google Scholar

    [19] 谢春林, 杨建国, 王立社, 等. 甘肃北山地区古亚洲南缘古生代岛弧带位置的讨论[J]. 地质学报, 2009, 83(11): 1584-1599 doi: 10.3321/j.issn:0001-5717.2009.11.004

    CrossRef Google Scholar

    XIE Chunlin, YANG Jianguo, WANG Lishe, et al. Disscussion on the Location of Paleozoic Island Arc Zone on the South Margin of Paleo-Asian Ocean in the Beishan Area of Gansu Province[J]. Acta Geologica Sinica, 2009, 83(11): 1584-1599. doi: 10.3321/j.issn:0001-5717.2009.11.004

    CrossRef Google Scholar

    [20] 辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(9): 1297-1316

    Google Scholar

    XIN Houtian, NIU Wenchao, TIAN Jian, et al. Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1297-1316.

    Google Scholar

    [21] 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.

    Google Scholar

    XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.

    Google Scholar

    [22] 杨玉柱, 袁万明. A型花岗岩的鉴别标志[J]. 河北地质学院学报, 1993, 16(2): 150-158

    Google Scholar

    YANG Yuzhu, YUAN Wanming. Discriminating Marks of A-type Granitoids[J]. Journal of Hebei College of Geology, 1993, 16(2): 150-158.

    Google Scholar

    [23] 张旗, 焦守涛. 埃达克岩来自高压背景-一个科学的, 可靠的, 有预见性的科学发现[J]. 岩石学报, 2020, 36(6): 1675-1683 doi: 10.18654/1000-0569/2020.06.02

    CrossRef Google Scholar

    ZHANG Qi, JIAO Shoutao. Adakite comes from a high-pressure background: A scientific, reliable, predictable scientific discovery[J]. Acta Petrologica Sinica, 2020, 36(6): 1675-1683. doi: 10.18654/1000-0569/2020.06.02

    CrossRef Google Scholar

    [24] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621-626 doi: 10.3969/j.issn.1000-6524.2012.04.014

    CrossRef Google Scholar

    ZHANG Qi, RAN Hao, LI Chengdong. A-type granite: what is the essence? [J]. Acta Petrologica Et Mineralogica, 2012, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    CrossRef Google Scholar

    [25] 张旗, 王焰, 刘伟, 等. 埃达克岩的特征及其意义[J]. 地质通报, 2002, 21(7): 431-435 doi: 10.3969/j.issn.1671-2552.2002.07.012

    CrossRef Google Scholar

    ZHANG Qi, WANG Yan, LIU Wei, et al. Adakite: Its characteristics and implications[J]. Geological Bulletin of China, 2002, 21(7): 431-435. doi: 10.3969/j.issn.1671-2552.2002.07.012

    CrossRef Google Scholar

    [26] 张旗, 王焰, 王元龙. 埃达克岩与构造环境[J]. 大地构造与成矿学, 2003, 27(2): 101-108 doi: 10.3969/j.issn.1001-1552.2003.02.001

    CrossRef Google Scholar

    ZHANG Qi, WANG Yan, WANG Yuanlong. On the relationship between adakite and its tectonic setting[J]. Geotectonica et Metallogenia, 2003, 27(2): 101-108. doi: 10.3969/j.issn.1001-1552.2003.02.001

    CrossRef Google Scholar

    [27] 张永玲, 张治国, 刘希军, 等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质, 2024, 57(1): 122−138.

    Google Scholar

    ZHANG Yongling, ZHANG Zhiguo, LIU Xijun, et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology, 2024, 57(1): 122−138.

    Google Scholar

    [28] 郑荣国, 吴泰然, 张文, 等. 阿拉善地块北缘雅干花岗岩体地球化学、地质年代学及其对区域构造演化制约[J]. 岩石学报, 2013, 29(08): 2665-2675

    Google Scholar

    ZHENG Rongguo, WU Tairan, ZHANG Wen, et al. 2013. Geochronology and geochemistry of the Yagan granite in the northern margin of the Alxa block: Constraints on the tectonic evolution of the southern Altaids[J]. Acta Petrologica Sinica, 29(8): 2665-2675.

    Google Scholar

    [29] Badarch G, Cunningham W D, Windley BF. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87~110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [30] Boynton W V, Geochemistry of the rare earth elements: meteorite studies[A]. In Henderson P (ed.). Rare earth element geochemistry[M]. Amsterdam, Elsevier, 1984: 63−114.

    Google Scholar

    [31] Charvet J, SHU Liangshu, Laurent-Charvet S. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates[J]. Episodes, 2007, 30: 162-186.

    Google Scholar

    [32] Defant M J, Drummond M S. Derivation of Some ModernArc Magmas by Melting of Young Subducted Lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [33] DU Long, LONG Xiaoping, YUAN Chao, et al. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff[J]. Lithos, 2018, 318: 47-59.

    Google Scholar

    [34] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [35] Eizenhöfer P R, ZHAO Guochun. Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 153-172. doi: 10.1016/j.earscirev.2017.09.010

    CrossRef Google Scholar

    [36] Forst B R, Barnes C G, Collins W J, et al. A Geochemitic Classification For Granitic Rocks[J]. Journal of Petrology, 2001. 42(11): 2033-2042. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [37] FU Dong, HUANG Bo, Kusky T M, et al. A middle Permian ophiolitic mélange belt in the Solonker suture zone, western Inner Mongolia, China: Implications for the evolution of the Paleo-Asian Ocean[J]. Tectonics, 2018, 37: 1292-1320. doi: 10.1029/2017TC004947

    CrossRef Google Scholar

    [38] JIAN Ping, Kröner A, Jahn B M, et al. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2014, 133: 62-93. doi: 10.1016/j.earscirev.2014.02.006

    CrossRef Google Scholar

    [39] Jian Ping, LIU Dunyi, Kröner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101: 233-259. doi: 10.1016/j.lithos.2007.07.005

    CrossRef Google Scholar

    [40] LI HaoDong, ZHOU JianBo, Wilde S A. Nature and development of the South Tianshan-Solonker suture zone[J]. Earth-Science Reviews, 2022, 223: 104189

    Google Scholar

    [41] LI Jinyi. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001

    CrossRef Google Scholar

    [42] Li Shan, Chung S L, Wilde S A, et al. Early‐Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth[J], 2017, 122(3): 2291-2309.

    Google Scholar

    [43] LI Shan, WANG Tao, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J]. Lithos, 2012, 134-135: 123-145. doi: 10.1016/j.lithos.2011.12.005

    CrossRef Google Scholar

    [44] Li Shan, Wang Tao, Wilde S A, et al. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews[J], 2013, 126: 206−234.

    Google Scholar

    [45] LIU Min, LAI Shaocong, ZHANG Da, et al. Middle Permian high Sr/Y monzogranites in central Inner Mongolia: reworking of the juvenile lower crust of Bainaimiao arc belt during slab break-off of the Palaeo-Asian oceanic lithosphere[J]. International Geology Review, 2019, 61(17): 2083-2099. doi: 10.1080/00206814.2019.1579057

    CrossRef Google Scholar

    [46] LIU Qian, ZHAO Guochun, HAN Yigui, et al. Early Paleozoic subduction processes of the Paleo-Asian Ocean: insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane[J]. Lithos, 2016, 262: 546-560. doi: 10.1016/j.lithos.2016.07.041

    CrossRef Google Scholar

    [47] LIU Qian, ZHAO Guochun, HAN Yigui, et al. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 2017, 274-275: 19-30. doi: 10.1016/j.lithos.2016.12.029

    CrossRef Google Scholar

    [48] LIU Qian, ZHAO Guochun, HAN Yigui, et al. Geochronology and geochemistry of Paleozoic to Mesozoic granitoids in western Inner Mongolia, China: implications for the tectonic evolution of the southern Central Asian Orogenic Belt[J]. The Journal of Geology, 2018, 126(4): 451-471. doi: 10.1086/697690

    CrossRef Google Scholar

    [49] LIU Yongsheng, WANG Xiaohong, WANG Dongbing, et al. Triassic high-Mg adakitic andesites from Linxi, Inner Mongolia: insights into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt-peridotite interaction[J]. Chemical Geology, 2012, 328: 89-108. doi: 10.1016/j.chemgeo.2012.03.019

    CrossRef Google Scholar

    [50] LU Jia, ZHANG Chen, LIU Dongdong. Geochronological, geochemical and Sr-Nd-Hf isotopic studies of the A-type granites and adakitic granodiorites in Western Junggar: Petrogenesis and tectonic implications[J]. Minerals, 2020, 10(397): 1-25.

    Google Scholar

    [51] Ludwing K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[CP]. Berkeley: Berkeley Geochronology Center. 2003.

    Google Scholar

    [52] LUAN JinPeng, TANG Jie, et al. Accretion kinematics and driving mechanism of the eastern Central Asian Orogenic Belt: Insights from seismic tomography and middle Permian-Middle Triassic magmatism in central Jilin Province[J]. Gondwana Research, 2022, 101: 114-131. doi: 10.1016/j.gr.2021.08.002

    CrossRef Google Scholar

    [53] Middemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [54] Miniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [55] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [56] Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [57] SHI Guanghai, MIAO Laicheng, ZHANG Fuqing, et al. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China[J]. Chinese Science Bulletin, 2004, 49(7): 723-729. doi: 10.1007/BF03184272

    CrossRef Google Scholar

    [58] SHI Yuruo, Anderson J L, LI Linlin, et al. Zircon ages and Hf isotopic compositions of Permian and Triassic A-type granites from central Inner Mongolia and their significance for late Palaeozoic and early Mesozoic evolution of the Central Asian Orogenic Belt[J]. International Geology Review, 2016, 58(8): 967-982. doi: 10.1080/00206814.2016.1138333

    CrossRef Google Scholar

    [59] SONG Dongfang, XIAO Wenjiao, Windley B F, et al. Carboniferous to Early Triassic magmatism and accretion in Alxa(NW China): implications for accretionary orogenesis of the southern Altaids[J]. Journal of the Geological Society, 2020, 177: 997-1012. doi: 10.1144/jgs2020-046

    CrossRef Google Scholar

    [60] SUN S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [61] WANG Qiang, XU JiFeng, et al. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, SouthChina: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    [62] WANG Tao, TONG Ying, XIAO Wenjiao, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National science review, 2022, 9(5), nwab210. doi: 10.1093/nsr/nwab210

    CrossRef Google Scholar

    [63] WANG Tao, ZHENG Yadong, Gehrels G E, et al. Geochronological evidence for existence of South Mongolian microcontinent—A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex[J]. Chinese Science Bulletin, 2001, 46(23): 2005-2008. doi: 10.1007/BF02901917

    CrossRef Google Scholar

    [64] WANG Wenlong, TENG Xuejian, LIU Yang, et al. From subduction to post‐collision: Early Permian‐middle Triassic magmatic records from Langshan Belt, Central Asian Orogenic Belt[J]. Geological Journal, 2020, 55(3): 2167-2184. doi: 10.1002/gj.3790

    CrossRef Google Scholar

    [65] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [66] Windley B F, Alexeiev D, XIAO Wenjiao, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [67] Wu Fuyuan, Sun Deyou, Li Huimin , et al, A-type granites in Northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187, 143−173.

    Google Scholar

    [68] XIAO Wenjiao, Windley BF, HAN Chunming, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [69] XIAO Wenjiao, Windley BF, HAO Jie, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1069.

    Google Scholar

    [70] XU Bei, Charvet J, CHEN Yan, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015

    CrossRef Google Scholar

    [71] YAN Quanshu, Metcalfe I, SHI Xuefa, et al. Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, eastern China: implications for lithospheric extension[J]. International Geology Review, 2019, 61(7): 821-838. doi: 10.1080/00206814.2018.1474388

    CrossRef Google Scholar

    [72] ZHANG Wen, Pease V, MENG Qingpeng, et al. Discovery of a Neoproterozoic granite in the Northern Alxa region, NW China: its age, petrogenesis and tectonic significance[J]. Geological Magazine, 2016, 153(03): 512-523. doi: 10.1017/S0016756815000631

    CrossRef Google Scholar

    [73] ZHENG Jiahao, MAO Jingwen, CHAI Fengmei, et al. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting[J]. Lithos, 2016, 260: 371-383. doi: 10.1016/j.lithos.2016.05.012

    CrossRef Google Scholar

    [74] ZHENG Rongguo, LI Jinyi, ZHANG Jin, et al. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high-Mg diorite in the southern Beishan[J]. Lithos, 2020, 358: 105406.

    Google Scholar

    [75] ZHENG Rongguo, LI Jinyi, ZHANG Jin, et al. A prolonged subduction-accretion in the southern Central Asian Orogenic Belt: Insights from anatomy and tectonic affinity for the Beishan complex[J]. Gondwana Research, 2021, 95: 88-112. doi: 10.1016/j.gr.2021.02.022

    CrossRef Google Scholar

    [76] ZHENG Rongguo, WU Tairan, ZHANG Wen, et al. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 2014, 25(2): 842-858. doi: 10.1016/j.gr.2013.05.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(308) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint