2024 Vol. 57, No. 3
Article Contents

LI Ping, ZHU Tao, LÜ Pengrui, WANG Hongliang, CHEN Junlu. 2024. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean. Northwestern Geology, 57(3): 44-58. doi: 10.12401/j.nwg.2023146
Citation: LI Ping, ZHU Tao, LÜ Pengrui, WANG Hongliang, CHEN Junlu. 2024. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean. Northwestern Geology, 57(3): 44-58. doi: 10.12401/j.nwg.2023146

Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean

  • Compared with the widespread magmatic events between the late Paleozoic and the early Mesozoic in Western Tianshan, the intrusive magmatic record of the early Paleozoic are preserved less, which conatrained our understanding on the early evolution of the Asian Ocean. Xiate gabbro is exposed in the north of the Southern Margin of the Central Tianshan, and zircon LA-ICPMS U-Pb dating shows that the formation age is 523±5 Ma, suggesting the Early Cambrian emplacement. Combined with the research on the regional igneous rocks, we believe that the Paleozoic subduction of the Paleo-Asian Ocean initiated in the west and then gradually expanded to the east, which may lay the foundation for the scissors closure (earlier in the west and later in the east) of the Tianshan Ocean. The geochemical characteristics of the Sodium and calcium alkaline rocks studied show that they have experienced the fractional crystallization of olivine, spinels, and the cumulation of plagioclase during their formation. The gabbro is a sodic and calc-alkaline series rocks, rich in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). Discrimination diagrams of tectonic magmatic environment indicate that it is a product of arc magmatism. The ε Hf (t) values range from +1.47 to +11.91, indicating a distinct mantle material source; the higher (Th/Nb)PM and lower Nb/La ratios imply the involvement of subduction materials during magmatic evolution. The formation age and petrogenetic characteristics of the Xiate gabbro indicate that the South Tianshan Ocean began to subduct towards the Central Tianshan Block in the Early Cambrian, and the initial arc magmatism was formed during the tectonic event.

  • 加载中
  • [1] 冯益民, 李智配, 陈隽璐, 等. 中国西北部大地构造图(1∶2 000 000)及说明书[M]. 北京: 地质出版社, 2021.

    Google Scholar

    [2] 高俊, 龙灵利, 钱青, 等. 南天山: 晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报, 2006, 225): 10491061.

    Google Scholar

    GAO Jun, LONG Lingli, QIAN Qing, et al. South Tianshan: a Late Paleozoic or a Triassic orogen?[J]. Acta Petrologica Sinica, 2006, 225): 10491061.

    Google Scholar

    [3] 李平, 王洪亮, 徐学义, 等. 西准噶尔早泥盆世马拉苏组火山岩岩石成因研究[J]. 岩石学报, 2014, 3012): 35533568.

    Google Scholar

    LI Ping, WANG Hongliang, XU Xueyi, et al. Petrogenesis of volcanic rocks from Early Devonian Marasu Formation, West Junggar[J]. Acta Petrologica Sinica, 2014, 3012): 35533568.

    Google Scholar

    [4] 李平, 徐学义, 王洪亮, 等. 中天山南缘那拉提碱性花岗岩岩石成因——来自锆石微量元素和Hf同位素的证据[J]. 地质通报, 2012, 3112): 19491964.

    Google Scholar

    LI Ping, XU Xueyi, WANG Hongliang, et al. Petrogenesis of Nalati alkali granites in South Central Tianshan Mountains: Evidence from zircon trace elements and Hf isotope[J]. Geological Bulletin of China, 2012, 3112): 19491964.

    Google Scholar

    [5] 李平. 中天山中西段古生代花岗岩成因及对天山洋陆转换时限的制约[D]. 西安: 长安大学, 2011.

    Google Scholar

    LI Ping. The Petrogenesis of Paleozoic Granites in the Middle and West Segment of the Central Tianshan and Constrain to the Process of the Ocean-continent Transition of the Tianshan [D]. Xi’an: Chang’an University, 2011.

    Google Scholar

    [6] 李舢, 王涛, 肖文交, 等. 中亚造山带东南缘从俯冲-增生到碰撞的构造-岩浆演化记录[J]. 岩石学报, 2023, 39(5): 1261-1275.

    Google Scholar

    LI Shan, WANG Tao, XIAO WenJiao, et al. Tectono-magmatic evolution from accretion to collision in the southern margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 2023, 39(5): 1261-1275.

    Google Scholar

    [7] 龙灵利, 高俊, 熊贤明, 等. 新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究[J]. 岩石学报, 2007, 234): 719732.

    Google Scholar

    LONG Lingli, GAO Jun, XIONG Xianming, et al. Geochemistry and geochronology of granitoids in Bikai region, southern Central-Tianshan mountains, Xinjiang[J]. Acta Petrologica Sinica, 2007, 234): 719732.

    Google Scholar

    [8] 钱青, 徐守礼, 何国琦, 等. 那拉提山北缘寒武纪玄武岩的元素地球化学特征及构造意义[J]. 岩石学报, 2007, 23(7): 1708-1720.

    Google Scholar

    QIAN Qing, XU Shouli, HE Guoqi, et al. Elemental geochemistry and tectonic significance of Cambrian basalts from basalts fron the northern side of the Nalati Mountain. Acta Petrologica Sinica, 2007, 23(7): 1708-1720.

    Google Scholar

    [9] 茹艳娇. 西天山大哈拉军山组火山岩地层序列、岩石成因与构造环境[D]. 西安: 长安大学, 2012.

    Google Scholar

    RU Yanjiao. The Stratigraphic Sequanence, Petrogenesis and Tectonic Setting of the Volcanic Rocks of the Dahalajunshan Formation, Western Tianshan Mountain, China [D]. Xi’an: Chang’an University, 2012.

    Google Scholar

    [10] 夏林圻, 夏祖春, 徐学义, 等. 天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J]. 西北地质, 2008, 414): 168.

    Google Scholar

    XIA Linqi, XIA Zuchun, XU Xueyi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 414): 168.

    Google Scholar

    [11] 夏林圻, 夏祖春, 徐学义, 等. 天山岩浆作用[M]. 北京: 地质出版社, 2007.

    Google Scholar

    [12] 肖文交, 宋东方, WINDLEY BF, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 4910): 15121545.

    Google Scholar

    XIAO Wenjiao, SONG Dongfang, WINDLEY BF, et al. Research progresses of the accretionary processes andmetallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, 4910): 15121545.

    Google Scholar

    [13] 新疆维吾尔自治区地质局. 1∶20万汗腾格里峰幅(K-44XV)地质矿产图[R].1981.

    Google Scholar

    [14] 徐学义, 王洪亮, 马国林, 等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志, 2010, 296): 691706.

    Google Scholar

    XU Xueyi, WANG Hongliang, MA Guolin, et al. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area, West Tianshan Mountains[J]. Acta Petrologica et Mineralogical, 2010, 296): 691706.

    Google Scholar

    [15] 徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学(地球科学), 2020, 6312): 19691991.

    Google Scholar

    XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020, 6312): 19691991.

    Google Scholar

    [16] 张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 564): 139.

    Google Scholar

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 564): 139.

    Google Scholar

    [17] Allen M B, Windley B F, Zhang C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 1993, 220: 89115. doi: 10.1016/0040-1951(93)90225-9

    CrossRef Google Scholar

    [18] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 5979. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [19] Belousova E, Griffin W, Oreilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

    Google Scholar

    [20] Blichert T, Albarède. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planet Science Letters, 1997, 148: 243258. doi: 10.1016/S0012-821X(97)00040-X

    CrossRef Google Scholar

    [21] Chen W, Zhang G, Ruan M, et al. Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation[J]. Journal of Geophysical Research Solid Earth, 2021, 126.

    Google Scholar

    [22] Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research[J]. Lithos, 2005, 79: 271297. doi: 10.1016/j.lithos.2004.09.004

    CrossRef Google Scholar

    [23] Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within the Tonga–Kermadec–Lau arc–back-arc systems: the role of varying mantle wedge composition in space and time[J]. Journal of Petrology, 1998, 39: 331368. doi: 10.1093/petroj/39.3.331

    CrossRef Google Scholar

    [24] Frisch W, Meschede M, Blakey R. Plate tectonics: Continental drift and mountain building [M]. Berlin Heidelberg: Springer, 2011.

    Google Scholar

    [25] Gao Jun, Long Lingli, Klemd R, et al. Tectonic evolution of the South Tianshan Orogen, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal Of Earth Sciences, 2009, 98: 12211238. doi: 10.1007/s00531-008-0370-8

    CrossRef Google Scholar

    [26] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64: 133147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [27] Handley H K, Macpherson C G, Davidson J P, et al. Constraining Fluid and Sediment to Subduction-Related Magmatism in Indonesia: IjenVolcanic Complex[J]. Journal of Petrology, 2007, 48: 11551183. doi: 10.1093/petrology/egm013

    CrossRef Google Scholar

    [28] Huang He, Wang Tao, Tong Ying, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103255. doi: 10.1016/j.earscirev.2020.103255

    CrossRef Google Scholar

    [29] Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90: 297314. doi: 10.1016/0012-821X(88)90132-X

    CrossRef Google Scholar

    [30] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [31] Hoskin P, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Rev Mineral Geochem, 2003, 53: 2762.

    Google Scholar

    [32] Lizuka T, Hirata T. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220: 121137. doi: 10.1016/j.chemgeo.2005.03.010

    CrossRef Google Scholar

    [33] Long Lingli, Gao Jun, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos, 2011, 126: 321340. doi: 10.1016/j.lithos.2011.07.015

    CrossRef Google Scholar

    [34] Ludwig K R. User's Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel[J]. Be rkeley Geochronological Center Special Publication, 2003, 4: 2532.

    Google Scholar

    [35] Marini J C, Chauvel C, Maury R C. Hf isotope compositions of northern Luzonarc lavas suggest involvement of pelagic sediments in their source[J]. Contributions to Mineralogy and Petrology, 2005, 149: 216232. doi: 10.1007/s00410-004-0645-4

    CrossRef Google Scholar

    [36] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79: 124. doi: 10.1016/j.lithos.2004.04.048

    CrossRef Google Scholar

    [37] Mccarthy A, Yogodzinski G M, Bizimis M, et al. Volcaniclastic sandstones record the influence of subducted Pacific MORB on magmatism at the early Izu-Bonin arc[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2021, 296: 170188. doi: 10.1016/j.gca.2021.01.006

    CrossRef Google Scholar

    [38] Middlemost E A H. Naming materials in magma-igneous rock system[J]. Earth-Science Reviews, 1994, 7: 215224.

    Google Scholar

    [39] Miyashiro A. Classification, characteristics, and origin of ophiolites[J]. The Journal of Geology, 1975, 83: 249281. doi: 10.1086/628085

    CrossRef Google Scholar

    [40] Mullen E D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 1983, 62: 5362. doi: 10.1016/0012-821X(83)90070-5

    CrossRef Google Scholar

    [41] Niu Y L, O’Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle[J]. Lithos, 2009, 112: 117.

    Google Scholar

    [42] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[A]. In: Hawkesworth C J, Norry M J (eds.). Continental Basalts and Mantle Xenoliths[M]. Cambridge: Shiva Publishing Ltd., 1983.

    Google Scholar

    [43] PLANK T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents[J]. Journal of Petrology, 2005, 46: 921944. doi: 10.1093/petrology/egi005

    CrossRef Google Scholar

    [44] Qian Qing, Gao Jun, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U–Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal Of Earth Sciences, 2009, 98: 551569. doi: 10.1007/s00531-007-0268-x

    CrossRef Google Scholar

    [45] Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium clock[J]. Science, 2001: 683687.

    Google Scholar

    [46] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [47] Tang M, Lee C T A, Chen K, et al. Nb/Ta systematics in arcmagma differentiation and the role of arclogites in continent formation[J]. Nature Communications, 2019, 10: 235. doi: 10.1038/s41467-018-08198-3

    CrossRef Google Scholar

    [48] Wang Tao, Tong Ying, Huang He, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023, 237: 104298. doi: 10.1016/j.earscirev.2022.104298

    CrossRef Google Scholar

    [49] Windley B F, Alexeiev D, Xiao WJ, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 3147. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [50] Wood D A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50: 1130. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [51] Xia Linqi, Xu Xueyi, Xia Zuchun, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, Northwestern China[J]. Geol. Soc. Am. Bull., 2004, 116: 419433. doi: 10.1130/B25243.1

    CrossRef Google Scholar

    [52] Xia Linqi. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195212. doi: 10.1016/j.earscirev.2014.09.006

    CrossRef Google Scholar

    [53] Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102117. doi: 10.1016/j.jseaes.2007.10.008

    CrossRef Google Scholar

    [54] Xu Xueyi, Wang Hongliang, Li Ping, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal Fwaof Asian Earth Sciences, 2013, 72: 3362. doi: 10.1016/j.jseaes.2012.11.023

    CrossRef Google Scholar

    [55] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasmas mass spectrometry[J]. Geostandard and Geoanalytical Research, 2004, 28: 353370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [56] Zhu M S, Yan H Y, Pastor G D, et al. Do microcontinents nucleate subduction initiation?[J]. Geology, 2023, 7: 668672.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(260) PDF downloads(10) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint