2024 Vol. 57, No. 3
Article Contents

SUN Jiming, MA Zhongping, YUN Jie, WANG Guoqiang. 2024. Geochronology Geochemistry and Petrogenesis of the Granite and Diorite in Wusun Mountain Western Tianshan. Northwestern Geology, 57(3): 59-72. doi: 10.12401/j.nwg.2024010
Citation: SUN Jiming, MA Zhongping, YUN Jie, WANG Guoqiang. 2024. Geochronology Geochemistry and Petrogenesis of the Granite and Diorite in Wusun Mountain Western Tianshan. Northwestern Geology, 57(3): 59-72. doi: 10.12401/j.nwg.2024010

Geochronology Geochemistry and Petrogenesis of the Granite and Diorite in Wusun Mountain Western Tianshan

  • The study object is located in the Chabuchaer Forest Farm on the northern margin of Wushun Mountain in Yili Basin, the studying of geochemistry, geochronology and petrogenesis have an important indicative significance for discussing crust-mantle magmatism in the southern margin of the West Tianshan. The geochemical characteristics show that the monzogranites is a high-potassium-calcium-alkaline and quasi-aluminous-weak peraluminous rocks, the monzogranites is enriched with LREE、weak negative Eu anomaly (δEu=0.74~0.84)、rich in LILEs and deficient in HFSEs(Nb、Ta、Ti、P), its Zr/Hf radios are 42~44, some samples contain a small amount of corundum mineral, and it show the characteristics of crust-derived granite. The Al2O3, FeOT and CaO of the diorite is obviously higher than that in granite, but the Na2O and K2O is lower than the granite, it belongs to high-potassium-calcium-alkaline quasi-aluminous rock; the diorite is enriched with LREE、weak positive anomaly of Eu(δEu=0.90~1.24)、rich in LILEs and deficient in HFSEs(Nb、Ta), in addition, the diorite has high Sr (Sr>400×10−6), low Y (12.83×10−6) and Yb (1.34×10−6) and high Mg#, therefore, the source rock is the partial melting product of the mantle overlying the subduction slab, which enrichment hornblende. The monzogranite and diorite show the characteristics of island arc magma. The zircon U-Pb dating results show that the age of monzogranite is 361.7±1.8 Ma, and belong to the late Devonian. Combined with previous research data, we believed that in ~360 Ma, due to the rolling-back or subduction of the southern Tianshan ocean plate, the overlying mantle partially melted and produced the basic magma. During the uppouring process of the magma, a large amount of heat were provided, which led to partial melting of the crust and the formation of acidic magma, and the two kinds of magma had uneven mixing. At the same time, mantle convection caused by upwelling magma leads to a certain extension (back-arc extension) in the Yili block.

  • 加载中
  • [1] 高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804−1816.

    Google Scholar

    GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geologcal Bulletin of China,2009,28(12):1804−1816.

    Google Scholar

    [2] 李永军, 李注苍, 佟丽莉, 等. 论天山古洋盆关闭的地质时限-来自伊宁地块石炭系的新证据[J]. 岩石学报, 2010, 25(6): 2905−2912.

    Google Scholar

    LI Yongjun, LI Zhucang, TONG Lili, et al. Revisit the constraints on the closure of the Tianshan ancient oceanic basin: New evidence from Yining block of the Carboniferous[J]. Acta Petrologica Sinica,2010,25(6):2905−2912.

    Google Scholar

    [3] 李承东, 张旗, 苗来成, 等. 冀北中生代高Sr低Y和低Sr低Y型花岗岩: 地球化学、成因及其与成矿作用的关系[J]. 岩石学报, 2004, 20(2): 269−284.

    Google Scholar

    LI Chengdong, ZHANG Qi, MIAO Laicheng, et al. Mesozoic high-Sr, low-Y and low-Sr, low-Y types granitoids in the northern Hebei province: Geochemistry and petrogenesis and its relation to mineralization of gold deposits[J]. Acta Petrologica Sinica,2004,20(2):269−284.

    Google Scholar

    [4] 李昌年. 岩浆混合作用及其研究评述[J]. 地质科技情报, 2002, 21(4): 49−54.

    Google Scholar

    LI Changnian. Comment on the magama mixing and their research[J]. Geological Science and Technology Information,2002,21(4):49−54.

    Google Scholar

    [5] 刘新, 钱青, 苏文, 等. 西天山阿吾拉勒西段木汗巴斯陶侵入岩体的地球化学特征、时代及地质意义[J]. 岩石学报, 2012, 28(8): 2401−2413.

    Google Scholar

    LIU Xin, QIAN Qing, SU Wen, et al. Pluton from Muhanbasitao in the western of Awulale, Western Tianshan: Geochemistry, geochronology and geological implications[J]. Acta Petrologica Sinica,2012,28(8):2401−2413.

    Google Scholar

    [6] 马昌前, 王人镜. 花岗质岩浆起源和多次岩浆混合的标志: 包体-以北京周口店岩体为例[J]. 地质论评, 1992, 38(2): 109−119.

    Google Scholar

    MA Changqian,WANG Renjing. Enclaves as indicators of the origin of granitoid magama and repeater magama mingling : an example fromthe Zhoukoudian intrusionBeijing[J]. Geological Review,1992,38(2):109−119.

    Google Scholar

    [7] 齐有强, 胡瑞忠, 刘桑, 等. 岩浆混合作用研究综述[J]. 矿物岩石地球化学通报, 2008, 27(4): 409−416.

    Google Scholar

    QI Youqiang ,HU Ruizhong ,LIU Shen,et al. Review on Magana Mixing and Mingling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008 , 27(4):409−416.

    Google Scholar

    [8] 茹艳娇. 西天山大哈拉军山组火山岩地层序列、 岩石成因与构造环境[D]. 西安: 长安大学, 2012, 1−113.

    Google Scholar

    RU Yanjiao. The Stratigraphic Sequanence,Petrogenesis and Tectonic Setting of the Volcanic Rocks of the Dahalajunshan Formation,Western Tianshan Mountain,China[D]. Xi’an: Chang’an University,2012, 1−113.

    Google Scholar

    [9] 舒良树, 王博, 朱文斌. 南天山蛇绿混杂岩中放射虫化石的时代及其构造意义[J]. 地质学报, 2007, 81(9): 1161−1168.

    Google Scholar

    SHU Liangshu,WANG Bo,ZHU Wenbin. Age of Radiolarian Fossils from the Heiyingshan Ophiolitic Melange,Southerm Tianshan Belt,NWChina ,and its Tectonic Significance[J]. Acta Geologica Sinica,2007,81(9):1161−1168.

    Google Scholar

    [10] 孙吉明, 白建科, 马中平, 等. 西天山特克斯县北乌孙山大哈拉军山组火山岩地球化学特征及构造意义[J]. 岩石矿物学杂志, 2014, 33(5): 799−810.

    Google Scholar

    SUN Jiming, BAI Jianke, MA Zhongping, et al. Geochemical characteristics and tectonic implications of Wusunshan volcanic rocks in northern Tekes County of West Tianshan Mountains[J]. Acta Petrologica et Mineralogica,2014,33(5):799−810.

    Google Scholar

    [11] 唐功建, 陈海红, 王强, 等. 西天山达巴特A型花岗岩的形成时代与构造背景[J]. 岩石学报, 2008, 24(5): 947−958

    Google Scholar

    TANG Gongjian, CHEN Haihong, WANG Qiang, et al. Geochronological age and tectonic background of the Dabate A-type granite pluton in the west Tianshan[J]. Acta Petrologica Sinica. 2008, 24(5): 947−958.

    Google Scholar

    [12] 童英, 王涛, 洪大卫, 等. 北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6): 619−641.

    Google Scholar

    TONG Ying, WANG Tao, HONG Dawei, et al. Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica et Mineralogica,2010,29(6):619−641.

    Google Scholar

    [13] 王博, 舒良树, Cluzel D, 等. 伊犁北部博罗科努岩体年代学和地球化学研究及其大地构造意义[J]. 岩石学报, 2007, 23(8): 1885−1900.

    Google Scholar

    WANG Bo, SHU Liangshu, Cluzel D, et al. Geochronological and geochemical studies on the Borohoro plutons, north of Yili, NW Tianshan and their Tectonic implication[J]. Acta Petrologica Sinica,2007,23(8):1885−1900.

    Google Scholar

    [14] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238.

    Google Scholar

    WU Fuyuan, LI Xianhua, YANG Jinhui, et al, Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.

    Google Scholar

    [15] 许继峰, 邬建斌, 王强, 等. 埃达克岩与埃达克质岩在中国的研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 6−13.

    Google Scholar

    XU Jifeng, WU Jianbin, WANG Qiang, et al. Research Advances of Adakites and Adakitic Rocks in China[J]. Bulletin of Mineralogy Petrology and Geochemistry,2014,33(1):6−13.

    Google Scholar

    [16] 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249−2269.

    Google Scholar

    ZHANG Qi, WANG Yan, LI Chengdong, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica,2006,22(9):2249−2269.

    Google Scholar

    [17] 朱永峰, 周晶, 宋彪, 等. 新疆“大哈拉军山组”火山岩的形成时代问题及其解体方案[J]. 中国地质, 2006, 33(3): 487−497.

    Google Scholar

    ZHU Yongfeng, ZHOU Jing, SONG Biao, et al. Age of the "Dahalajunshan" Formation in Xinjiang and its disintegration[J]. Chinese Geology,2006,33(3):487−497.

    Google Scholar

    [18] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos,1999,46(3):605−626. doi: 10.1016/S0024-4937(98)00085-1

    CrossRef Google Scholar

    [19] Bao Z H, Cai K D, Sun M, et al. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China[J]. Journal of Asian Earth Sciences,2018,153:100−117. doi: 10.1016/j.jseaes.2017.04.026

    CrossRef Google Scholar

    [20] Dong Y P, Zhang G W, Neubauer F, et al. Syn- and post-collisional granitoids in the Central Tianshan orogen: Geochemistry, geochronology and implications for tectonic evolution[J]. Gondwana Research,2011,20(2−3):568−581.

    Google Scholar

    [21] Gao J, Li M S, Xiao X X, et al. Paleozoic tectonic evolution off the Tianshan Orogen, northwestern China[J]. Tectonophysics,1998,287(1−4):213−231. doi: 10.1016/S0040-1951(97)00211-4

    CrossRef Google Scholar

    [22] Gao J, Klemd. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints[J]. Lithos,2003,66:1−22.

    Google Scholar

    [23] Gerya T V. Future directions in subduction modeling[J]. Journal of Geodynamics,2011,52(5):344−378.

    Google Scholar

    [24] Gerya T V, Connolly J A D, Yuen D A. Why is terrestrial subduction one-sided? [J]. Geology, 2008, 36 (1), 43−46.

    Google Scholar

    [25] Han B F, Guo Z J, Zhang Z C, et al. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin,2010,122(3−4):627−640. doi: 10.1130/B26491.1

    CrossRef Google Scholar

    [26] Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 1−22.

    Google Scholar

    [27] Hyndman R D, Currie C A. Subduction zone backarcs, continental mobile belts, and orogenic heat[J]. GSA Today , 2005, 15, 463−475.

    Google Scholar

    [28] Jiang Z S, Zhang Z H, Wang Z H, et al. Geology, geochemistry, and geochronology of the Zhibo iron deposit in the Western Tianshan, NW China: Constraints on metallogenesis and tectonic setting[J]. Ore Geology Reviews,2014,57(3):406−424.

    Google Scholar

    [29] Jung S, Pfänder J A. Source composition and melting temperatures of orogenic granitoid: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy,2007,19(6):859−870. doi: 10.1127/0935-1221/2007/0019-1774

    CrossRef Google Scholar

    [30] Kröner A, Alexeiev D V, Rojas-Agramonte Y, et al. Mesoproterozoic ( Grenville-age) terranes in the Kyrgyz North Tianshan: Zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen[J]. Gondwana Research,2013,23(1):272−295.

    Google Scholar

    [31] Long L L, Gao J, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos,2011,126(3-4):321−340. doi: 10.1016/j.lithos.2011.07.015

    CrossRef Google Scholar

    [32] Liu W, Fei P X. Methane-rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion: The mantle dynamics underneath the Paleo-Asian Ocean through to the post-collisional period[J]. Earth and Planetary Science Letters,2006,242(3−4):286−301. doi: 10.1016/j.jpgl.2005.11.059

    CrossRef Google Scholar

    [33] Liu Y. Early Carboniferous Radiolarian Fauna from Heiyingshan South of the Tianshan Mountains and Its Geotectonic Significance[J]. Acta Petrologica Sinica,2001,75(1):101−105. doi: 10.1111/j.1755-6724.2001.tb00511.x

    CrossRef Google Scholar

    [34] Li Y J, Sun L D, Wu H R, et al. Permo-Carboniferous Radiolarians from the Wupataerkan Group , Western South Tianshan , Xinjiang , China[J]. Acta Petrologica Sinica, 2005, 79(1): 16−23.

    Google Scholar

    [35] Ma X X, Shu L S, Meert J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the postcollisional granitoids[J]. Gondwana Research,2015,27(1):228−243. doi: 10.1016/j.gr.2013.09.018

    CrossRef Google Scholar

    [36] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25(4):956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [37] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences,1995,23(1):251−286. doi: 10.1146/annurev.ea.23.050195.001343

    CrossRef Google Scholar

    [38] Qian Q, Gao J, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and diorite rocks from Xiate, NW China[J]. International Journal of Earth Sciences, 2008, 98(3): 551−569.

    Google Scholar

    [39] Rudnick, Gao S. Composition of the continental crust[J]. In: Rudnick R L (ed.). Treatise on Geochemistry[M]. Amsterdam: Elsevier,2003,3:1−64.

    Google Scholar

    [40] Seltmann R, Konopelko D, Biske G, et al. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Sciences,2011,42(42):821−838.

    Google Scholar

    [41] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D, Norry, M. J (Eds.). Magmatism in Ocean Basins[J]. In: Saunders A D, Norry M J (Eds.). Magmatism in Ocean Basins[M]. Geological Society of London Special Publication,1989,42:313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [42] Sun L H, Wang YJ , Fan W M, et al. Post collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tectonic implications[J]. Gondwana Research,2008,14(3):383−394.

    Google Scholar

    [43] Su W, Gao J, Klemd R, et al. U-Pb zircon geochronology of Tianshan eclogites in NW China: implication for the collision between the Yili and Tarim blocks of the southwestern Altaids[J]. European Journal of Mineralogy,2010,22:473−478.

    Google Scholar

    [44] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [45] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164(12):31−47.

    Google Scholar

    [46] Wilhem C, Windley B. F, Stampfli G. M. The Altaids of Central Asia: a tectonic and evolutionary innovative review[J]. Earth Science Reviews,2012,113:303−341. doi: 10.1016/j.earscirev.2012.04.001

    CrossRef Google Scholar

    [47] Wyllie P J , Cox K G, Biggar C M. The Habit of Apatite in Synthetic Systems and Igneous Rocks[J]. Journal of Petrology, 1962, 3 (2).

    Google Scholar

    [48] Wang M, Zhang J J, Zhang B, et al. An Early Paleozoic collisional event along the northern margin of the Central Tianshan Block: Constraints from geochemistry and geochronology of granitic rocks[J]. Journal of Asian Earth Sciences,2014,113:325−338.

    Google Scholar

    [49] Wang Q, Zhu D C, Zhao Z D, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences,2012,53:59−66.

    Google Scholar

    [50] Xia L Q, Xu X Y, Li X M, et al. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas[J]. Geoscience Frontiers,2012,3(4):445−471. doi: 10.1016/j.gsf.2011.12.011

    CrossRef Google Scholar

    [51] Xiao W J, Kusky T, Safonova I, et al. Tectonics of the Central Asian Orogenic Belt and its Pacific analogues[J]. Journal of Asian Earth Sciences,2015,113:1−6. doi: 10.1016/j.jseaes.2015.06.032

    CrossRef Google Scholar

    [52] Xiao W J, Santosh M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research,2014,25(4):1429−1444. doi: 10.1016/j.gr.2014.01.008

    CrossRef Google Scholar

    [53] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science,2004,304(4):370−395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [54] Xiao W J, Windley B. F, Allen M. B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research,2013,23:1316−1341.

    Google Scholar

    [55] Zhang D Y, Zhang Z C, Encarnación J, et al. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during late Paleozoic time[J]. Lithos,2012,146(8):65−79.

    Google Scholar

    [56] Zhao Z H, Xiong X L, Wang Q, et al. Late Paleozoic under plating in North Xinjiang: Evidence from shoshonite and adakite[J]. Gongwana Research,2009,16:216−226. doi: 10.1016/j.gr.2009.03.001

    CrossRef Google Scholar

    [57] Zhang L F, Du J X, Lü Z, et al. A huge oceanic-type uhp metamorphic belt in Southwestern Tianshan, China: peak metamorphic age and p-t path[J]. Science Bulletin,2013,58(35):4378−4383. doi: 10.1007/s11434-013-6074-x

    CrossRef Google Scholar

    [58] Zhang L F, Ai Y L, Li X P , et al. Triassic collision of westernTianshan orogenic belt , China: Evidence from SHRIMP U-Pb datingof zircon from HP/UHP eclogitic rocks[J]. Lithos,2007,96(1−2):266−280.

    Google Scholar

    [59] Zhong L, Wang B, Alexeiev D V, et al. Paleozoic multi-stage accretionary evolution of the SW Chinese Tianshan: new constraints from plutonic complex in the Nalati Range[J].Gondwana Research, 2017, 45, 254−274.

    Google Scholar

    [60] Xu X Y, Wang H L, Li P, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in weatern Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2012, 1−30.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(241) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint