2023 Vol. 56, No. 3
Article Contents

LIU Jingyu, JIANG Lei, YIN Lihe, HU Hongli, WANG Longlong, SUN Jigan. 2023. Soil Nutrient Characteristics and Main Controlling Factors in the Oasis Zone of the Northeastern Margin of Tarim Basin. Northwestern Geology, 56(3): 141-152. doi: 10.12401/j.nwg.2023088
Citation: LIU Jingyu, JIANG Lei, YIN Lihe, HU Hongli, WANG Longlong, SUN Jigan. 2023. Soil Nutrient Characteristics and Main Controlling Factors in the Oasis Zone of the Northeastern Margin of Tarim Basin. Northwestern Geology, 56(3): 141-152. doi: 10.12401/j.nwg.2023088

Soil Nutrient Characteristics and Main Controlling Factors in the Oasis Zone of the Northeastern Margin of Tarim Basin

More Information
  • Soil health is related to people’s production, living standards, and national food security and is an important strategic resource. To understand the nutrient characteristics of soils in typical oasis areas on the northeast edge of the Tarim basin. A total of 140 soil surface samples were collected from the study area to determine the content of major nutrient elements and analyze their ecological chemometric characteristics, spatial distribution patterns, and the main controlling factors affecting nutrient enrichment. The results showed that: ① High values of Fe and Mn were most widely distributed in the study area, while high values of Mg were the least widely distributed. Analysis of the ecological stoichiometric characteristics of the soil showed that the lack of nitrogen and phosphorus was the main controlling factor limiting the normal growth of plants in the area. ② In terms of quantity, 99.14% of the total land area in the study area is infertile or very infertile, and only 0.86% of the land is at the medium−grade level. In terms of spatial distribution, the moderately fertile land is distributed in the south−eastern part of the district in the form of islands, and the very barren land is mainly distributed in the oasis−desert transition zone. ③ Among the four types of land use, the soil nutrient content of the arable land is higher. Meanwhile, the content of nutrient elements is positively correlated with slope orientation and surface roughness and negatively correlated with altitude. At the same time, the abundance of soil nutrients is also closely related to long−term continuous cropping, crop fertilization, irrigation techniques, and other anthropogenic influences.

  • 加载中
  • [1] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2008

    Google Scholar

    BAO Shidan. Soil agrochemical analysis (3rd ed. ) [M]. Beijing: China Agricultural Press, 2008.

    Google Scholar

    [2] 陈金萍, 李奕, 李祥余, 等. 不同农业土地利用方式对土壤养分含量分布影响及养分等级评价[J]. 萍乡学院学报, 2022, 39(3): 111-116

    Google Scholar

    CHEN Jinping, LI Yi, LI Xiangyu, et al. Effects of different agricultural land use practices on soil nutrient content distribution and evaluation of nutrient classes[J]. Journal of Pingxiang College, 2022, 39(3): 111-116.

    Google Scholar

    [3] 陈彦. 绿洲农田土壤养分时空变异及精确分区管理研究[D]. 石河子: 石河子大学, 2008

    Google Scholar

    CHEN Yan. Research on spatial and temporal variability of soil nutrients in oasis farmland and precise zoning management[D]. Shihezi: Shihezi University, 2008.

    Google Scholar

    [4] 冯博, 周皓, 徐阳, 等. 矿区农地重金属污染风险评价——基于改进的模糊综合评价法[J]. 有色金属工程, 2022, 12(2): 138-145 doi: 10.3969/j.issn.2095-1744.2022.02.019

    CrossRef Google Scholar

    FENG Bo, ZHOU Hao, XU Yang, et al. Evaluation of heavy metal pollution risk in agricultural land in mining areas--based on improved fuzzy integrated evaluation method[J]. Nonferrous Metals, 2022, 12(2): 138-145. doi: 10.3969/j.issn.2095-1744.2022.02.019

    CrossRef Google Scholar

    [5] 郭雯雯, 毕淑琪, 李冰, 等. 不同土地利用参数下CALPUFF模型的敏感性分析[J]. 环境污染与防治, 2022, 44(6): 705-709

    Google Scholar

    GUO Wenwen, BI Shuqi, LI Bing, et al. Sensitivity analysis of CALPUFF model under different land use parameters[J]. Environmental Pollution & Control, 2022, 44(6): 705-709.

    Google Scholar

    [6] 贺思楠, 吕刚, 王锋柏, 等. 辽西北风沙地土壤养分空间变异性与土地利用的关系[J]. 沈阳农业大学学报, 2022, 53(2): 213-220. doi: 10.3969/j.issn.1000-1700.2022.02.010

    CrossRef Google Scholar

    HE Sinan, LV Gang, WANG Fengbai, et al. Relationship between spatial variability of soil nutrients and land use in a wind-sand landscape in northwest Liaoning Province[J]. Journal of Shenyang Agricultural University, 2022, 53(2): 213-220. doi: 10.3969/j.issn.1000-1700.2022.02.010

    CrossRef Google Scholar

    [7] 黄彩变, 严军, 鞠景枫, 等. 塔里木盆地南缘新垦农田土壤性状变化及其与小麦产量的关系[J]. 水土保持学报, 2020, 34(2): 245-252 doi: 10.13870/j.cnki.stbcxb.2020.02.035

    CrossRef Google Scholar

    HANG Caibian, YAN Jun, JU Jingfeng, et al. Changes in soil properties and their relationship with wheat yield in newly reclaimed farmland on the southern edge of the Tarim Basin[J]. Journal of Soil and Water Conservation, 2020, 34(2): 245-252. doi: 10.13870/j.cnki.stbcxb.2020.02.035

    CrossRef Google Scholar

    [8] 黄锦学, 熊德成, 刘小飞, 等. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报, 2017, 37(1): 12-24

    Google Scholar

    HUANG Jinxue, XIONG Decheng, LIU Xiaofei, et al. Effects of warming on soil organic carbon mineralization: A review[J]. Acta Ecologica Sinica, 2017, 37(1): 12-24.

    Google Scholar

    [9] 贾佳瑜, 刘小芳, 赵勇钢, 等. 汾河流域下游农田土壤重金属空间分布特征与污染评价[J]. 干旱区资源与环境, 2021, 35(8): 132-137 doi: 10.13448/j.cnki.jalre.2021.224

    CrossRef Google Scholar

    JIA Jiayu, LIU Xiaofang, ZHAO Yonggang, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in agricultural soils in the downstream of Fen River Basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(8): 132-137. doi: 10.13448/j.cnki.jalre.2021.224

    CrossRef Google Scholar

    [10] 贾鲁净, 杨联安, 封涌涛, 等. 宝鸡市农耕区土壤养分空间变异及其影响因素分析[J]. 干旱区资源与环境, 2022, 36(12): 135-143

    Google Scholar

    JIA Lujing, YANG Lianan, FENG Yongtao, et al. Spatial variability of soil nutrients and its influencing factors in the farming area of Baoji[J]. Journal of Arid Land Resources and Environment, 2022, 36(12): 135-143.

    Google Scholar

    [11] 李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 土壤学报, 2017, 54(1): 160-170 doi: 10.11766/trxb201604140096

    CrossRef Google Scholar

    LI Danwei, WANG Ziquan, TIAN Haixia, et al. Carbon, nitrogen and phosphorus contents and ecological stoichiometry of soils at different altitudes in the Taibai Mountains[J]. Acta Pedologica Sinica, 2017, 54(1): 160-170. doi: 10.11766/trxb201604140096

    CrossRef Google Scholar

    [12] 李红林, 贡璐, 朱美玲, 等. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52(6): 1345-1355 doi: 10.11766/trxb201411220585

    CrossRef Google Scholar

    LI Honglin, GONG Lu, ZHU Meiling, et al. Soil chemometric characteristics of oases on the northern edge of the Tarim Basin[J]. Acta Pedologica Sinica, 2015, 52(6): 1345-1355. doi: 10.11766/trxb201411220585

    CrossRef Google Scholar

    [13] 李美娟, 陈国宏, 陈衍泰. 综合评价中指标标准化方法研究[C]. 2004年中国管理科学学术会议, 2004

    Google Scholar

    LI Meijuan, CHEN Guohong, CHEN Yantai. Research on standardization methods of indicators in comprehensive evaluation[C]. 2004 Chinese Management Science Conference, 2004.

    Google Scholar

    [14] 廖启林, 华明, 张为, 等. 人为活动对江苏土壤元素含量分布的影响[J]. 地质学刊, 2012, 36(2): 147-156 doi: 10.3969/j.issn.1674-3636.2012.02.147

    CrossRef Google Scholar

    LIAO Qilin, HUA Ming, ZHANG Wei, et al. Influence of anthropogenic activities on the distribution of soil elemental content in Jiangsu[J]. Acta Geologica Sinica, 2012, 36(2): 147-156. doi: 10.3969/j.issn.1674-3636.2012.02.147

    CrossRef Google Scholar

    [15] 刘寒双, 崔纪菡, 刘猛, 等. 有机肥替代部分化肥对谷子产量、土壤养分及酶活性的影响[J]. 中国土壤与肥料, 2022(7): 71-81 doi: 10.11838/sfsc.1673-6257.21183

    CrossRef Google Scholar

    LIU Hanshang, CUI Jihan, LIU Meng, et al. Effects of organic fertilizers on grain yield, soil nutrients and enzyme activities by replacing some chemical fertilizers[J]. Soil and Fertilizer Sciences in China, 2022(7): 71-81. doi: 10.11838/sfsc.1673-6257.21183

    CrossRef Google Scholar

    [16] 刘庆, 王静, 史衍玺, 等. 基于GIS的农田土壤重金属空间分布研究[J]. 安全与环境学报, 2007(2): 109-113 doi: 10.3969/j.issn.1009-6094.2007.02.029

    CrossRef Google Scholar

    LIU Qing, WANG Jing, SHI Yanxi, et al. Spatial distribution of heavy metals in agricultural soils based on GIS[J]. Journal of Safety and Environment, 2007(2): 109-113. doi: 10.3969/j.issn.1009-6094.2007.02.029

    CrossRef Google Scholar

    [17] 鲁泽让, 夏梓泰, 芦美, 等. 周年轮作休耕对土壤AMF群落和团聚体稳定性的影响[J]. 环境科学, 2023: 1-14

    Google Scholar

    LU Zerang, XIA Zitai, LU Mei, et al. Effects of annual crop rotation fallow on the stability of soil AMF communities and aggregates[J]. Environmental Science, 2023: 1-14.

    Google Scholar

    [18] 李青, 薛珍. 塔里木河流域居民生态认知与支付行为空间异质性研究——基于上中下游2133个居民调查数据[J]. 干旱区资源与环境, 2018, 32(1): 14-21 doi: 10.13448/j.cnki.jalre.2018.003

    CrossRef Google Scholar

    LI Qing, XUE Zhen. Spatial heterogeneity of ecological cognition and payment decision behavior in the Tarim River Basin-Based on the survey data of 2133 residents[J]. Journal of Arid Land Resources and Environment, 2018, 32(1): 14-21. doi: 10.13448/j.cnki.jalre.2018.003

    CrossRef Google Scholar

    [19] 马倩倩, 董博, 许旺旺, 等. 干旱区耕地质量等级评价及土壤养分与盐渍化的分析研究——以民勤绿洲为例[J]. 干旱区地理, 2021, 44(2): 514-524 doi: 10.12118/j.issn.10006060.2021.02.22

    CrossRef Google Scholar

    MA Qianqian, DONG Bo, XU Wangwang, et al. Evaluation of arable land quality rating and analysis of soil nutrients and salinization in arid areas: the case of Minqin Oasis[J]. Arid Land Geography, 2021, 44(2): 514-524. doi: 10.12118/j.issn.10006060.2021.02.22

    CrossRef Google Scholar

    [20] 能子礼超, 勾琴, 刘盛余, 等. 模糊数学法综合评价土壤重金属污染程度研究[J]. 能源与环保, 2020, 42(7): 39-43

    Google Scholar

    NENG ZI Lichao, GOU Qin, LIU Shengyu, et al. Fuzzy mathematical method for comprehensive evaluation of soil heavy metal pollution[J]. China Energy and Environmental Protection, 2020, 42(7): 39-43.

    Google Scholar

    [21] 宋铮, 余庭龙, 朱春云, 等. 高寒丘陵区不同退耕年限人工林形质评价[J]. 西北林学院学报, 2020, 35(6): 52-59 doi: 10.3969/j.issn.1001-7461.2020.06.07

    CrossRef Google Scholar

    SONG Zheng, YU Tinglong, ZHU Chunyun, et al. Evaluation of the morphological quality of plantation forests in alpine hilly areas with different years of fallowing[J]. Journal of Northwest Forestry University, 2020, 35(6): 52-59. doi: 10.3969/j.issn.1001-7461.2020.06.07

    CrossRef Google Scholar

    [22] 陶睿, 王子芳, 高明, 等. 重庆市丰都县紫色土养分空间变异及土壤肥力评价[J]. 土壤, 2017, 49(1): 155-161 doi: 10.13758/j.cnki.tr.2017.01.023

    CrossRef Google Scholar

    TAO Rui, WANG Zifang, GAO Ming, et al. Spatial variation of nutrients and evaluation of soil fertility in purple soils of Fengdu County, Chongqing[J]. Soils, 2017, 49(1): 155-161. doi: 10.13758/j.cnki.tr.2017.01.023

    CrossRef Google Scholar

    [23] 陶于祥, 许凯丰, 易宗旺, 等. 基于半变异函数的城市热岛空间异质性分析[J]. 西南大学学报(自然科学版), 2018, 40(10): 145-152 doi: 10.13718/j.cnki.xdzk.2018.10.023

    CrossRef Google Scholar

    TAO Yuxiang, XU Kaifeng, YI Zongwang, et al. Spatial heterogeneity analysis of urban heat island based on semi-variance function[J]. Journal of Southwest University(Natural Science Edition), 2018, 40(10): 145-152. doi: 10.13718/j.cnki.xdzk.2018.10.023

    CrossRef Google Scholar

    [24] 田鸽. 秦岭火地塘土壤养分空间分布特征及其影响因素[D]. 西安: 长安大学, 2021

    Google Scholar

    TIAN Ge. Spatial distribution characteristics of soil nutrients in Tierra del Fuego in the Qinling Mountains and its influencing factors[D]. Xi’an: Chang’an University, 2021.

    Google Scholar

    [25] 田立文, 祁永春, 戴路, 等. 新疆南疆耕地土壤养分含量及其分布特征评价——以阿克苏地区为例[J]. 核农学报, 2020, 34(1): 214-223 doi: 10.11869/j.issn.100-8551.2020.01.0214

    CrossRef Google Scholar

    TIAN Liwen, QI Yongchun, DAI Lu, et al. Evaluation of soil nutrient content and its distribution characteristics in arable land in South Xinjiang - an example from Aksu region[J]. Acta Agriculturae Nucleatae Sinica, 2020, 34(1): 214-223. doi: 10.11869/j.issn.100-8551.2020.01.0214

    CrossRef Google Scholar

    [26] 王宇超, 李倩, 黎斌, 等. 秦岭南坡中段植物群落物种多样性与环境相关性分析[J]. 基因组学与应用生物学, 2016, 35(10): 2859-2866 doi: 10.13417/j.gab.035.002859

    CrossRef Google Scholar

    WANG Yuchao, LI Qian, LI Bin, et al. Analysis of species diversity and environmental relevance of plant communities on the southern slopes of the Qinling Mountains[J]. Genomics and Applied Biology, 2016, 35(10): 2859-2866. doi: 10.13417/j.gab.035.002859

    CrossRef Google Scholar

    [27] 魏新, 郑小锋, 张硕新. 秦岭火地塘不同海拔梯度森林土壤理化性质研究[J]. 西北林学院学报, 2014, 29(3): 9-14 doi: 10.3969/j.issn.1001-7461.2014.03.02

    CrossRef Google Scholar

    WEI Xin, ZHENG Xiaofeng, ZHANG Shuoxin. Physicochemical properties of forest soils at different elevation gradients in Tierra del Fuego in the Qinling Mountains[J]. Journal of Northwest Forestry University, 2014, 29(3): 9-14. doi: 10.3969/j.issn.1001-7461.2014.03.02

    CrossRef Google Scholar

    [28] 信会男, 赖宁, 耿庆龙, 等. 基于GIS的塔额盆地农田土壤养分空间变异特征分析[J]. 新疆农业科学, 2022, 59(7): 1776-1785 doi: 10.6048/j.issn.1001-4330.2022.07.025

    CrossRef Google Scholar

    XIN Huinan, LAI Ning, GENG Qinglong, et al. Analysis of spatial variability of soil nutrients in agricultural fields of the Ta'er Basin based on GIS[J]. Xinjiang Agricultural Sciences, 2022, 59(07): 1776-1785. doi: 10.6048/j.issn.1001-4330.2022.07.025

    CrossRef Google Scholar

    [29] 闫金凤, 陈曦, 罗格平, 等. 干旱区绿洲地下水水位时空变异性对土地覆被变化的响应[J]. 科学通报, 2006(S1): 42-48 doi: 10.3321/j.issn:0023-074X.2006.z1.007

    CrossRef Google Scholar

    YAN Jinfeng, CHEN Xi, LUO Geping, et al. Response of spatial and temporal variability of groundwater levels to land cover change in an arid oasis[J]. Chinese Science Bulletin, 2006(S1): 42-48. doi: 10.3321/j.issn:0023-074X.2006.z1.007

    CrossRef Google Scholar

    [30] 杨阳, 李飒, 孙立强, 等. 半变异函数计算波动范围的方法研究[J]. 武汉大学学报(工学版), 2021, 54(7): 618-626 doi: 10.14188/j.1671-8844.2021-07-006

    CrossRef Google Scholar

    YANG Yang, LI Sa, SUN Liqiang, et al. Research on the method of calculating the fluctuation range by semi-variance function[J]. Engineering Journal of Wuhan University, 2021, 54(7): 618-626. doi: 10.14188/j.1671-8844.2021-07-006

    CrossRef Google Scholar

    [31] 张慧文, 马剑英, 张自文, 等. 地统计学在土壤科学中的应用[J]. 兰州大学学报(自然科学版), 2009, 45(6): 14-20 doi: 10.13885/j.issn.0455-2059.2009.06.013

    CrossRef Google Scholar

    ZHANG Huiwen, MA Jianying, ZHANG Ziwen, et al. Application of geostatistics in soil science[J]. Journal of Lanzhou University(Natural Sciences), 2009, 45(6): 14-20. doi: 10.13885/j.issn.0455-2059.2009.06.013

    CrossRef Google Scholar

    [32] 张子璐, 左昕弘, 刘峰, 等. 渝西丘陵区土壤速效钾空间异质性及影响因素[J]. 土壤学报, 2020, 57(2): 307-315 doi: 10.11766/trxb201902250030

    CrossRef Google Scholar

    ZHANG Zilu, ZUO Xinhong, LIU Feng, et al. Spatial heterogeneity and influencing factors of soil fast-acting potassium in the hilly areas of western Chongqing[J]. Acta Pedologica Sinica, 2020, 57(02): 307-315 doi: 10.11766/trxb201902250030

    CrossRef Google Scholar

    [33] 赵敬坤, 陈松柏, 李忠意, 等. 模糊综合评价法判断重庆花椒种植区土壤肥力水平[J]. 中国农机化学报, 2021, 42(10): 206-212 doi: 10.13733/j.jcam.issn.2095-5553.2021.10.29

    CrossRef Google Scholar

    ZHAO Jingkun, CHEN Songbai, LI Zhongyi, et al. Fuzzy integrated evaluation method to determine soil fertility level in pepper growing areas of Chongqing[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 206-212. doi: 10.13733/j.jcam.issn.2095-5553.2021.10.29

    CrossRef Google Scholar

    [34] 朱平宗, 张光辉, 杨文利, 等. 红壤区林地浅沟不同植被类型土壤生态化学计量特征[J]. 水土保持研究, 2020, 27(6): 60-65 doi: 10.13869/j.cnki.rswc.2020.06.008

    CrossRef Google Scholar

    ZHU Pingzong, ZHANG Guanghui, YANG Wenli, et al. Soil ecological stoichiometry of different vegetation types in shallow furrows in red soil areas[J]. Research of Soil and Water Conservation, 2020, 27(06): 60-65. doi: 10.13869/j.cnki.rswc.2020.06.008

    CrossRef Google Scholar

    [35] 赵雯, 黄来明. 高寒山区不同土地利用类型土壤养分化学计量特征及影响因素[J]. 生态学报, 2022, 42(11): 4415-4427

    Google Scholar

    ZHAO Wen, HUANG Laiming. Stoichiometric characteristics and influencing factors of soil nutrients under different land use types in an alpine mountain region[J]. Acta Ecologica Sinica, 2022, 42(11): 4415-4427.

    Google Scholar

    [36] Ali E N, Sang S L, Yasser M A, et al. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils[J]. Geoderma, 2018, 332: 100-108. doi: 10.1016/j.geoderma.2018.06.017

    CrossRef Google Scholar

    [37] Ayoubi, Mehnatkesh, Jalalian, et al. Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes[J]. Archives of Agronomy and Soil Science, 2014, 60(5): 625-638. doi: 10.1080/03650340.2013.825899

    CrossRef Google Scholar

    [38] Cory C C, Daniel L. C: N: P Stoichiometry in Soil: Is There a "Redfield Ratio" for the Microbial Biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252. doi: 10.1007/s10533-007-9132-0

    CrossRef Google Scholar

    [39] Cheng W J, Xi H Y, Sindikubwabo C, et al. Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert[J]. Ecological Indicators, 2020, 119.

    Google Scholar

    [40] Dai W, Li Y H, FU W J, et al. Spatial variability of soil nutrients in forest areas: A case study from subtropical China[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(6): 827-835. doi: 10.1002/jpln.201800134

    CrossRef Google Scholar

    [41] Khormali F, Ajami M, Ayoubi S, et al. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran[J]. Agriculture, Ecosystems and Environment, 2009, 134(3): 178-189.

    Google Scholar

    [42] Li D X, Li Y N, Xie Y L, et al. Effects of ecological restoration on soil biogenic elements and their ecological stoichiometry in the Yellow River Delta, China[J]. Frontiers in Marine Science, 2022.

    Google Scholar

    [43] Li Q, Yang J Y, Guan W H, et al. Soil fertility evaluation and spatial distribution of grasslands in Qilian Mountains Nature Reserve of eastern Qinghai-Tibetan Plateau[J]. Peerj, 2021, 9.

    Google Scholar

    [44] Razan M, Shankar S, Dinesh K, et al. Soil Fertility Mapping and Assessment of the Spatial Distribution of Sarlahi District, Nepal[J]. American Journal of Agricultural Science, 2020, 7(1): 8-16.

    Google Scholar

    [45] Sharma R, Sood K. Characterization of Spatial Variability of Soil Parameters in Apple Orchards of Himalayan Region Using Geostatistical Analysis[J]. Communications in Soil Science and Plant Analysis, 2020, 51(8): 1065-1077. doi: 10.1080/00103624.2020.1744637

    CrossRef Google Scholar

    [46] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C: N: P ratios in China's soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/3): 139-151.

    Google Scholar

    [47] Xiao J J, Ma H X, Lu C T. Study on Spatial Distribution of Soil Nutrients and Comprehensive Evaluation of Nutrients in Low Mountain-Hilly Region of Sichuan Province, China[J]. Applied Mechanics and Materials, 2013, 2301(295-298): 2544-2548.

    Google Scholar

    [48] Zhang X X, Xu K, Zhang D J. Risk assessment of water resources utilization in Songliao Basin of Northeast China[J]. Environmental Earth Sciences, 2012, 67(5): 1319-1329. doi: 10.1007/s12665-012-1575-5

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(6)

Article Metrics

Article views(1087) PDF downloads(231) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint