2023 Vol. 56, No. 3
Article Contents

JIA Jun, MAO Yimin, MENG Xiaojie, GAO Bo, GAO Manxin, WU Wenying. 2023. Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County, Hanzhong City. Northwestern Geology, 56(3): 239-249. doi: 10.12401/j.nwg.2023084
Citation: JIA Jun, MAO Yimin, MENG Xiaojie, GAO Bo, GAO Manxin, WU Wenying. 2023. Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County, Hanzhong City. Northwestern Geology, 56(3): 239-249. doi: 10.12401/j.nwg.2023084

Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County, Hanzhong City

More Information
  • To address the problem of low prediction accuracy of landslide susceptibility evaluation model due to the difficulty of knowledge reuse and generalization of shallow machine learning model, this paper takes Lueyang County, Hanzhong City, Shaanxi Province as the study area and uses deep random forest to build a regional geological disaster susceptibility evaluation model to improve the prediction accuracy. Firstly, based on the research results of landslide mechanism in Lueyang County, nine factors such as slope, relative height difference, slope direction, slope type, engineering geological rock group, fault distance, river system distance, road and railroad distance, and vegetation cover are selected as susceptibility evaluation indexes; secondly, the study area is divided into 5 m × 5 m raster cells and the values of evaluation factors are extracted and input into the depth random forest evaluation model; finally, the susceptibility evaluation map of the study area is obtained. Based on the evaluation results, geological hazards in Lueyang County can be classified into four levels: very high susceptibility, high susceptibility, medium susceptibility, and low susceptibility, with the proportion of area being 5.31%, 22.97%, 42.11%, and 29.61%. The classification results are consistent with the actual development of geological hazards and reasonably reflect the overall characteristics of geological hazard distribution in the study area. In addition, the area under the ROC curve of the geological hazard susceptibility prediction model of deep random forest is 91.2%, which is higher than 86.3% of the random forest prediction model, indicating that the model is reasonable and feasible, and can provide new ideas for the evaluation of regional landslide susceptibility.

  • 加载中
  • [1] 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程地质学报, 2018, 37(1): 156-167

    Google Scholar

    HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167.

    Google Scholar

    [2] 李亭, 田原, 邬伦, 等. 基于随机森林方法的滑坡灾害危险性区划[J]. 地理与地理信息科学, 2014, 30(6): 25-30 doi: 10.3969/j.issn.1672-0504.2014.06.006

    CrossRef Google Scholar

    LI Ting, TIAN Yuan, WU Lun, et al. Landslide susceptibility Mapping Using Random Forest[J]. Geography and Geo-Information Science, 2014, 30(6): 25-30. doi: 10.3969/j.issn.1672-0504.2014.06.006

    CrossRef Google Scholar

    [3] 刘坚, 李树林, 陈涛, 等. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报·信息科学版, 2018, 43(7): 1085-1091

    Google Scholar

    LIU Jian, LI Shulin, CHEN Tao, et al. Landslide Susceptibility Assesment Based on Optimized Random Forest Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091.

    Google Scholar

    [4] 孟庆华. 秦岭山区地质灾害风险评估方法研究—以陕西凤县为例[D]. 北京: 中国地质科学院, 2011

    Google Scholar

    MENG Qinghua. Study on the Methods of Geo-hazards Risk Assessment in Qinling Mountain: A case studyof Feng County, Baoji City, Shaanxi Province[D]. Beijing: Chinese Academy of Geological Sciences, 2011.

    Google Scholar

    [5] 孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1: 5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249-259

    Google Scholar

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method—Taking 1: 50000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology, 2022, 55(2): 249-259.

    Google Scholar

    [6] 邱海军. 区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究——以宁强县为例[D]. 西安: 西北大学, 2012: 83

    Google Scholar

    QIU Haijun. Study on the Regional Landslide Characteristic Analysis and Hazard Assessment: A case study of Ningqiang County[D]. Xi’an: Northwest University, 2012: 83.

    Google Scholar

    [7] 邱维蓉, 吴帮玉, 潘学树, 等. 几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J]. 西北地质, 2020, 53(1): 222-233

    Google Scholar

    QIU Weirong, WU Bangyu, PAN Xueshu, et al. Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County[J]. Northwestern Geology, 2020, 53(1): 222-233.

    Google Scholar

    [8] 田春山, 刘希林, 汪佳, 等. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质, 2016, 43(6): 154-170

    Google Scholar

    TIAN Chunshan, LIU Xilin, WANG Jia. et al. Geohazard susceptibility assessmentbased on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 154-170.

    Google Scholar

    [9] 王佳运, 毕俊擘, 杨旭东, 等. 山西吕梁山区城镇边坡风险分级与优化[J]. 地质通报, 2020, 39(12): 2004-2012 doi: 10.12097/j.issn.1671-2552.2020.12.014

    CrossRef Google Scholar

    WANG Jiayun, BI Junbo, YANG Xudong, et al. Risk classification and optimization of to-wn side slope in Lüliang Mountain[J]. Geological Bulletin of China, 2020, 39(12): 2004-2012. doi: 10.12097/j.issn.1671-2552.2020.12.014

    CrossRef Google Scholar

    [10] 王杰, 马凤山, 郭捷, 等. 一种改进的区域滑坡危险性评价模型及其应用[J]. 中国地质灾害与防治学报, 2011, 22(2): 14-19 doi: 10.3969/j.issn.1003-8035.2011.02.003

    CrossRef Google Scholar

    WANG Jie, MA Fengshan, GUO Jie, et al. An improved regional landslide hazard assessment, model and its application[J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(2): 14-19. doi: 10.3969/j.issn.1003-8035.2011.02.003

    CrossRef Google Scholar

    [11] 王涛, 吴树仁, 石菊松, 等. 秦岭中部太白县地质灾害发育特征及危险性评估[J]. 地质通报, 2013, 32(12): 1976-1983

    Google Scholar

    WANG Tao, WU Shuren, SHI Jusong, et al. Case Study Of Landslide Characteristics And Hazard Assessment In Taibai County, Central Qinling Mountains[J]. Geological Bulletinof China, 2013, 32(12): 1976-1983.

    Google Scholar

    [12] 吴常润, 赵冬梅, 刘澄静, 等. 基于GIS和信息量模型的陇川县滑坡易发性评价[J]. 西北地质, 2020, 53(2): 308-320

    Google Scholar

    WU Changrun, ZHAO Dongmei, LIU Chengjing, et al. Landslide Susceptibility Assessment of Longchuan County Based on GIS and Information Value Model[J]. NorthwesternGeology, 2020, 53(2): 308-320.

    Google Scholar

    [13] 吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1): 321-330

    Google Scholar

    WU Runze, HU Xudong, MEI Hongbo, et. al. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area[J]. Earth Science, 2021, 46(1): 321-330.

    Google Scholar

    [14] 吴孝情, 赖成光, 陈晓宏, 等. 基于随机森林权重的滑坡危险性评价: 以东江流域为例[J]. 自然灾害学报, 2017, 26(5): 119-129

    Google Scholar

    WU Xiaoqing, LAI Chengguang, CHEN Xiaohong, et al. A landslide hazard assessment based on random forestweight: a case study in the Dongjiang River Basin[J]. Journal of Natural Disarsters, 2017, 26(5): 119-129.

    Google Scholar

    [15] 向喜琼. 区域滑坡地质灾害危险性评价与风险管理[D]. 成都: 成都理工大学, 2005: 22

    Google Scholar

    XIANG Xiqiong. Regional Landslide Hazard Assessment and Risk Management[D]. Chengdu: Chengdu University of Technology, 2005: 22.

    Google Scholar

    [16] 薛强, 张茂省, 李林等. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 2015, 34(11): 2108-2115

    Google Scholar

    XUE Qiang, ZHANG Maosheng, LI Lin. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an. Geological Bulletin of China, 2015, 34(11): 2108-2115.

    Google Scholar

    [17] 张春山, 韩金良, 孙炜锋, 等. 陕西陇县地质灾害危险性分区评价[J]. 地质通报, 2008, 27(11): 1795-1801 doi: 10.3969/j.issn.1671-2552.2008.11.006

    CrossRef Google Scholar

    ZHANG Chunshan, HAN Jinliang, SUN Weifeng, et al. Assessments of geohazard danger zoning in Longxian County, Shaanxi, China[J]. Geological Bulletin of China, 2008, 27(11): 1795-1801. doi: 10.3969/j.issn.1671-2552.2008.11.006

    CrossRef Google Scholar

    [18] 张茂省, 贾俊, 王毅, 等. 基于人工智能(AI)的地质灾害防控体系建设[J]. 西北地质, 2019a, 52(2): 103-116

    Google Scholar

    ZHANG Maosheng, JIA Jun, WANG Yi, et. al. Construction of Geological Disarster Prevention and Control System Based on AI[J]. Northwestern Geology, 2019a, 52(2): 103-116.

    Google Scholar

    [19] 张茂省, 薛强, 贾俊, 等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质, 2019b, 52(2): 125-135 doi: 10.19751/j.cnki.61-1149/p.2019.02.013

    CrossRef Google Scholar

    ZHANG Maosheng, XUE Qiang, JIA Jun, et. al. Methods and Practice for the Investigationand Risk Assessment of Geo-hazards in Mountains Towns[J]. Northwestern Geology, 2019b, 52(2): 125-135. doi: 10.19751/j.cnki.61-1149/p.2019.02.013

    CrossRef Google Scholar

    [20] 张向营, 张春山, 孟华君, 等. 基于Random Forest和AHP的贵德县北部山区滑坡危险性评价[J]. 水文地质工程地质, 2018, 45(4): 142-149

    Google Scholar

    ZHANG Xiangying, ZHANG Chunshan, MENG Huajun, et al. Landslide hazard evaluation in the northern mountainous area of Guide County based on Random Forest and AHP[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 142-149.

    Google Scholar

    [21] 张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3503-3513

    Google Scholar

    ZHANG Yongshuang, SU Shengrui, WU Shuren, et al. Research On Relationship Between Fault Movement And Large-Scale Landslide In Intensive Earthquake Region[J]. Chinese Journalof Rock Mechanics and Engineering, 2011, 30(Sup. 2): 3503-3513.

    Google Scholar

    [22] 赵建华, 陈汉林, 杨树峰, 等. 基于决策树算法的滑坡危险性区划评价[J]. 浙江大学学报(理学版), 2004, 31(4): 465-470

    Google Scholar

    ZHAO Jianhua, CHEN Hanlin, YANG Shufeng, et al. Landslide risk assessment based on decision tree arithmetic[J]. Journal of Zhejiang University (Science Edition), 2004, 31(4): 465-470.

    Google Scholar

    [23] 周静静, 赵法锁, 李辉, 等. 陕西省地质灾害与影响因素相关性研究[J]. 灾害学, 2019, 34(2): 228-234 doi: 10.3969/j.issn.1000-811X.2019.02.041

    CrossRef Google Scholar

    ZHOU Jingjing, ZHAO Fasuo, LI Hui, et al. Correlational Research Between Geological Hazards and impact Factors in Shaanxi Province[J]. Journal of Catastrophology, 2019, 34(2): 228-234. doi: 10.3969/j.issn.1000-811X.2019.02.041

    CrossRef Google Scholar

    [24] 周样样. 陕南地区强降雨条件下突发型地质灾害成因机制研究[D]. 西安: 长安大学, 2013

    Google Scholar

    ZHOU Yangyang. Study on Formation Mechanism of Abrupt Geological Hazards of Southern Shaanxi Region in Condition of Strong Rainstorm[D]. Xi’an: Chang’an University, 2013.

    Google Scholar

    [25] Chung C J F, Fabbri A G. Validation of spatial prediction modelsfor landslidehazard mapping[J]. Natural Hazards, 2003, 30(3): 451-472. doi: 10.1023/B:NHAZ.0000007172.62651.2b

    CrossRef Google Scholar

    [26] Dou J , Yunus A P , Merghadi A , et al. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning[J]. Science of the Total Environment, 2020, 720: 137320. https://doi.org/10.1016/j.scitotenv.2020.137320

    Google Scholar

    [27] Maher Ibrahim Samee, Biswajeet Pradhana, Saro Lee, et al. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment[J]. Catena, 2020, 186: 10424. https://doi.org/10.1016/j.catena.2019.104249

    Google Scholar

    [28] Saro, Lee, Joo Hyung Ryu, Joong Sun Won, et al. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network[J]. Engineering Geology, 2004, 71(3-4): 289-302. doi: 10.1016/S0013-7952(03)00142-X

    CrossRef Google Scholar

    [29] Snoek J, Larochelle H, Adams R P. et al. Practical Bayesian Optimization of Machine Learning Algorithms[J]. Advances in Neural Information Processing Systems, 2012, 4: 1–12.

    Google Scholar

    [30] Fang Zhice, Wang Yi , Ling Peng, et al. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping[J]. Computer & Geosciencees, 2020, 139: 104470. https://doi.org/10.1016/j.cageo.2020.104470

    Google Scholar

    [31] Zhou Zhihua, Ji Feng. Deep Forest: Towards An Alternative to Deep Neural Networks[J]. Statistics, 2017, 71(3–4): 289–302.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1395) PDF downloads(199) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint