2025 Vol. 58, No. 1
Article Contents

WU Lei, ZHAI Xinwei, WANG Erteng, WANG Yun, GUO Zhi’ang, SONG Gaorui, WANG Jinrong, DU Jun. 2025. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area. Northwestern Geology, 58(1): 27-42. doi: 10.12401/j.nwg.2023038
Citation: WU Lei, ZHAI Xinwei, WANG Erteng, WANG Yun, GUO Zhi’ang, SONG Gaorui, WANG Jinrong, DU Jun. 2025. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area. Northwestern Geology, 58(1): 27-42. doi: 10.12401/j.nwg.2023038

Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area

More Information
  • The Jijitaizi ophiolite belt in the middle of the Beishan orogenic belt, between the Mingshui-Hanshan microcontinental block and the Gongpoquan unit is an important part of the Jijitaizi-Xiaohuangshan ophiolite belt, composed of ultrabasic rocks, gabbro and basalt. To reveal the tectonic setting of Jijitaizi ophiolite belt, gabbro and basalt are selected for petrological and geochemical studies. MgO of gabbro and basalt is 6.04%~6.73% and 6.21%~9.66%, Mg# values are 32.33~37.03, 27.58~46.27, respectively, SI consolidation index is 27.66~31.55 and 24.96~42.20, Al2O3 is 15.82%~16.79% and 13.38%~15.38%, Na2O higher than K2O content (Na2O/K2O=9.75~17.15, 1.95~23.26), Na2O+K2O is 4.48%~4.90% and 3.3%~4.68%, P2O5 is 0.07%~0.09% and 0.16%~0.27%. Both of gabbro and basalt enrichment of LILEs and LREE, depletion of HREE and HFSEs and Eu have no obvious anomalies (δEu=0.98~1.09、0.88~1.06). (87Sr/86Sr)i is 0.7037000.704768, (143Nd/144Nd)i is 0.5122340.512361, εNd(t) is +4.18~+6.66. These characteristics indicate Jijitaizi ophiolite belt belong to SSZ type ophiolite belt, basalt and gabbro originated from partial melting of the depleted mantle and experienced crystallization differentiation and crustal contamination. Combined with geological background, it can be concluded that the Jijitaizi ophiolite may form in a back-arc basin, resaulting from northward subduction of the Hongliuhe-Niujuanzi-Xichangjing ocean basin.

  • 加载中
  • [1] 代堰锫, 李同柱, 张惠华, 等. , 扬子陆块西缘江浪穹窿超基性岩的成因: 锆石U-Pb定年、岩石地球化学及Sr-Nd同位素[J]. 沉积与特提斯地质, 2021, 41(04): 573-584.10.19826/j.cnki.1009-3850.2021.01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    CrossRef Google Scholar

    DAI Yanpei, LI Tongzhu, ZHANG Huihua, et al. , Petrogenesis of the ultramafic pluton in the Jianglangdome, western margin of the Yangtze block: ZirconU-Pbdating, geochemistry and Sr-Nd isotopes[J]. Sedimentary Geology and Tethyan Geolog, 2021. 41(04): 573-584.10. 19826/j. cnki. 1009-3850.2021. 01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    CrossRef Google Scholar

    [2] 丁嘉鑫, 韩春明, 肖文交, 等. 北山造山带花牛山岛弧东段钨矿床成矿时代和成矿动力学过程[J]. 岩石学报, 2015, 31(2): 594-616

    Google Scholar

    DING Jiaxing, Han Chunming, Xiao Wenjiao. , et al. , Geochemistry and U-Pb geochronology of tungsten deposit of Huaniushan island arc in the Beishan Orogenic Belt, and its geodynamic background[J]. Acta Petrologica Sinica, 2015, 31(2): 594-616

    Google Scholar

    [3] 董洪凯, 薛鹏远, 刘广, 刘思林, 于龙. 内蒙古北山地区芨芨台子-小黄山蛇绿岩构造属性及与成矿关系: 来自阿民乌素地幔橄榄岩印证[J]. 地质与勘探, 2022, 58(04): 767-777

    Google Scholar

    DONG Hongkai, XUE Pengyuan, LIU Guang, et al. , Tectonic Attributes of the Jijitaizi-Xiaohuangshan Ophiolite in the Beishan Area, Inner Mongolia and in Relationship to Metallogenesis: Evidence from the Aminwusu Mantle Peridotite[J]. Geology and Exploration, 2022, 58(04): 767-777

    Google Scholar

    [4] 董朋生, 董国臣, 孙转荣, 等. 冀北五凤楼煌斑岩年代学、地球化学特征及其成因[J]. 现代地质, 2018, 32(02): 305-315. DOI: 10.19657/j. geoscience. 1000-8527.2018. 02.09.

    CrossRef Google Scholar

    DONG Pensheng, Dong Guocheng, Sun Zhuangrong, et al. , Chronology, Geochemistry Characteristics and Petrogenesis of Wufenglou Lamprophyres in Northern Hebei, China[J]. Geoscience, 2018, 32(02): 305-315. DOI:10.19657/j.geoscience.1000-8527.2018.02.09.

    CrossRef Google Scholar

    [5] 杜雪亮.中亚造山带南缘北山红柳河蛇绿岩带成因及构造意义研究[D]. 兰州: 兰州大学, 2019.

    Google Scholar

    DU Xueliang. Origin and Tectonic Sigificance of Hongliuhe Ophiolite Belt in Beishan, Southern Margin of Central Asian Orogenic Belt[D]. Lanzhou: Lanzhou University, 2019

    Google Scholar

    [6] 龚全胜, 刘明强, 李海林, 等. 甘肃北山造山带类型及基本特征[J]. 西北地质. 2002, (03): 28-34

    Google Scholar

    GONG Quansheng, LIU Mingqiang, LI Hailing, et al. , The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2002, (03): 28-34.

    Google Scholar

    [7] 龚全胜, 刘明强, 梁明宏, 等, 北山造山带大地构造相及构造演化[J]. 西北地质, 2003.36(1): 11-17.

    Google Scholar

    GONG Quansheng, Liu Mingqiang, Liang Minghong, et al. , The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2003. 35( 4) : 30-40

    Google Scholar

    [8] 何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35( 4) : 30-40

    Google Scholar

    HE Shiping, Ren Bingcheng, Yao Wenguang, et al. , 2002. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwest Geology, 35( 4) : 30-40

    Google Scholar

    [9] 何国琦, 李茂松. 中国兴蒙-北疆蛇绿岩地质的若干问题[J]. 地学研究, 1993, 2: 3~12

    Google Scholar

    HE Guoqi, Li Maosong Some Problems of Ophiolite Geology in Northern China[J]. Dixue Yanjiu, 1993, 2: 3~12

    Google Scholar

    [10] 胡新茁, 赵国春, 胡新悦, 等. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J]. 地质通报, 2015, 34(Z1): 425-436

    Google Scholar

    HU Xingzhuo, Zhao Guochun, Hu Xingyue, et al. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 2015, 34(Z1): 425-436.

    Google Scholar

    [11] 黄河, 王涛, 童英, 等. 中国西天山古生代岩浆岩时空架构、源区特征及构造背景[J]. 西北地质, 2024, 57(6): 25−43.

    Google Scholar

    HUANG He, WANG Tao, TONG Ying, et al. Spatial and Temporal Framework, Evolution of Magma Sources, and Tectonic Settings of Paleozoic Magmatic Rocks in West Tianshan, China[J]. Northwestern Geology, 2024, 57(6): 25−43.

    Google Scholar

    [12] 李敏, 辛后田, 田健, 等. 北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义[J]. 地球科学, 2020, 45(07): 2393-2412

    Google Scholar

    LI Ming, XING Houtian, TIAN Jian, et al. , Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen[J]. Earth Science. 2020, 45(07): 2393-2412.

    Google Scholar

    [13] 李向民, 余吉远, 王国强, 等. 甘肃北山地区芨芨台子蛇绿岩年代学研究及其意义[J]. 地质通报, 2012, 31( 12) : 2025-2031.

    Google Scholar

    LI Xiangming, YU Jiyuan, WANG Guoqiang, et al. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance[J], Geological Bulletin of China,2012, 31(12): 2025-2031.

    Google Scholar

    [14] 刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J]. 地学研究, 1995. (28): 7–48

    Google Scholar

    LIU Xueya, WANG Quan. Tectonic of Orogenic belts in Beishan MTS. , Western China and Their evolution[J]. Dixue Yanjiu, 1995, (28): 7–48.

    Google Scholar

    [15] 刘懿馨, 沙鑫, 马蓁, 等. 北祁连西段双龙镁铁质-超镁铁质岩地球化学特征及构造意义[J]. 岩石学报, 2018, 34(02): 383-397.

    Google Scholar

    LIU Yixin, SHA Xin, MA Zheng, et al. , Geochemical characteristics and tectonic implication of the Shuanglong mafic-ultramafic rocks in western section of the North Qilian[J]. Acta Petrologica Sinica, 2018, 34(2) : 383 -397

    Google Scholar

    [16] 孟庆涛, 张正平, 董洪凯. 内蒙古北山地区阿民乌素蛇绿岩的年代学、地球化学特征及大地构造意义[J]. 地质与勘探, 2021.57(01): 122-135

    Google Scholar

    MENG Qingtao, Zhang Zhengping, Dong Hongkai, Chronology, geochemical characteristics and tectonic significance of Aminwusu ophiolite in the Beishan area, Inner Mongolia[J]. Geology and Exploration, 2021.57(01): 122-135.

    Google Scholar

    [17] 牛文超, 辛后田, 段连峰, 等. , 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性---基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019.46(5): 977-994

    Google Scholar

    NIU Wenchao, Xin Houtian, Duan Lianfeng, et al. , The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia—New understanding based on the geological map of Qinghegou Sheet (1: 50000)[J]. Geology in China, 2019.46(5): 977-994

    Google Scholar

    [18] 任秉琛, 何世平, 姚文光, 等. , 甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义[J]. 西北地质, 2001.34( 2): 21-27 doi: 10.3969/j.issn.1009-6248.2001.02.004

    CrossRef Google Scholar

    REN Bingchen, He Shiping, Yao Wenguang, et al. , Rb-Sr isotope age of Niuquanzi ophiolite and its tectonic significance in Beishan district, Gansu[J]. Northwest Geology, 2001.34( 2): 21-27. doi: 10.3969/j.issn.1009-6248.2001.02.004

    CrossRef Google Scholar

    [19] 宋博, 张慧元, 魏东涛, 等. 中亚造山带南缘中—新元古代地壳的揭示——来自北山—阿拉善北部钻遇碱性花岗岩的年代学和Hf同位素示踪研究[J]. 地球学报, 2021, 42(01): 9-20

    Google Scholar

    SONG Bo, ZHANG Huiyuan, WEI Dongtao, et al. , Revelation of the Meso–Neoproterozoic Crust on the Southern Margin of the Central Asian Orogenic Belt: Chronology and Hf Isotope Tracer from Drilling-intersected Alkaline Granites, Northern Beishan–Alxa[J]. Acta Geoscience Sinica, 2021, 42(01): 9-20

    Google Scholar

    [20] 宋东方, 肖文交, 韩春明, 等. , 北山中部增生造山过程: 构造变形和40Ar-39Ar 年代学制约[J]. 岩石学报, 2018. 34( 7) : 2087-2098

    Google Scholar

    SONG Dongfang, Xiao Wenjiao, Han Chunming, et al. , Accretionary processes of the central segment of Beishan: Constraints from structural deformation and40Ar-39Ar geochronology[J]. gy. Acta Petrologica Sinica, 2018, 34(7) : 2087 -209.

    Google Scholar

    [21] 宋泰忠, 王瑾, 林海, 等. , 内蒙古北山地区小黄山蛇绿岩地质特征[J]. 西北地质, 2008.41 (03): 55-63

    Google Scholar

    SONG Taizhong, Wang Jing, Lin Hai, et al. , The Geological Features of Ophiolites of Xiaohuangshanin Beishan Area, Inner Mongolia[J]. Northwest Geology, 2008,41 (03): 55-63.

    Google Scholar

    [22] 王国强. 北山古生代蛇绿岩、火山岩研究与构造演化[D]. 西安:长安大学. 2015.

    Google Scholar

    WANG Guoqiang, The Research of the Paleozoic Ophiolites and Volcanic Rocks and the Tectonic Evolution in the Beishan area (Northwest China)[D]. Xi’an Changan University, 2015.

    Google Scholar

    [23] 王国强, 李向民, 徐学义, 等. , 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J]. 岩石学报, 2014, 30(6): 1685-1694

    Google Scholar

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 2014. 30(6): 1685-1694

    Google Scholar

    [24] 王国强, 李向民, 徐学义, 等. , 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 40(01): 71-81

    Google Scholar

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021.40(1): 71-81

    Google Scholar

    [25] 王怀涛. 中亚造山带南段北山构造-岩浆作用及其地质意义的研究[D].兰州: 兰州大学, 2019.

    Google Scholar

    WANG Huaitao, Tectono-magmatism and its geological significance in the beishan area of the southern part of the Central Asian Orogenic Belt[D]. Lanzhou: Lanzhou University, 2019.

    Google Scholar

    [26] 王鑫玉. 北山公婆泉岛弧岩石组合、岩浆时空演变及其构造意义[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所), 2017.

    Google Scholar

    WANG Xinyu. The rock assemblages, spatial and temporal variations in the Gongpoquan arc, Beishan and their implications for tectonic setting[D]. Guangzhou :Guangzhou Institute of Geochemistry, CAS 2017.

    Google Scholar

    [27] 王鑫玉, 袁超, 龙晓平, 等. , 北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义[J]. 地球化学, 2018.47(1): 63-78 doi: 10.3969/j.issn.0379-1726.2018.01.005

    CrossRef Google Scholar

    WANG Xinyu, Yuan Chao, Long Xiaoping, et al. , Geochronological, geochemical, and geological significance of Jianshan and Shibanjing granites in the Gongpoquan Arc, Beishan Orogenic Belt[J]. Geochemical, 2018.47(1): 63-78. doi: 10.3969/j.issn.0379-1726.2018.01.005

    CrossRef Google Scholar

    [28] 吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

    Google Scholar

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 11−28.

    Google Scholar

    [29] 夏林圻, 夏祖春, 徐学义. 北祁连山奥陶纪弧后盆地火山岩浆成因[J]. 中国地质. 2003, 30(1): 48-60

    Google Scholar

    XIA Linqi, Xia Zuchun, Xu Xueyi. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains[J]. Geology in China, 2003.30(1): 48-60.

    Google Scholar

    [30] 辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(09): 1297-1316

    Google Scholar

    XIN Houtian, NIU Wenchao, TIAN Jian, et al. , Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1297-1316

    Google Scholar

    [31] 杨高学, 刘晓宇, 朱钊, 等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 2024, 57(3): 1−10.

    Google Scholar

    YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 1−10.

    Google Scholar

    [32] 张国震, 辛后田, 段连峰, 等. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义[J/OL]. 地球科学, 2021: 1−14. http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    Google Scholar

    ZHANG Guozheng, XIN Houtian, DUAN Lianfeng, et al. Geochemical characteristics and tectonic implications of the end Early Permian high magnesium gabbro from northern Beishan orogenic belt, Inner Mongolia[J/OL]. Earth Science, 2021: 1−14, http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    Google Scholar

    [33] 张元元, 郭召杰. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J]. 岩石学报, 2008, 24(4): 803-809

    Google Scholar

    ZHANG Yuanyuan, Guo Zhaojie. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu Provinces and its tectonic implications[J]. Acta Petrologica Sinica, 2008.21(4): 803-809.

    Google Scholar

    [34] 张正平, 段炳鑫, 孟庆涛, 等. 内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质与勘探, 2017, 53(06): 1129-1139. DOI: 10.13712/j. cnki. dzykt. 2017.06. 008.

    CrossRef Google Scholar

    ZHANG Zhengpin, DUAN Bingxin, MENG Qintao, et al. , LA-ICP-MS Zircon U-Pb Dating of Amphibolites of the Beishan Group in the Beishan Area, Inner Monolia and its Geological Significance[J]. Geology and Exploration, 2017, 53(06): 1129-1139. DOI: 10.13712/j.cnki.dzykt.2017.06.008.

    CrossRef Google Scholar

    [35] 张正平, 辛后田, 程海峰, 等. 内蒙古北山造山带发现额勒根蛇绿岩——红石山-百合山蛇绿岩带东延的证据[J]. 地质通报, 2020, 39(9): 1389-1403

    Google Scholar

    ZHANG Zhengpin, XIN Houtian, CHEN Haifeng, et al. , The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt[J]. Geological Bulletin of China. 2020.39(9): 1389-1403.

    Google Scholar

    [36] 郑荣国, 吴泰然, 张文, 等. 北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J]. 地质学报, 2012, 86(6): 961-971

    Google Scholar

    ZHENG Rongguo, Wu Tairan, Zhang Wen, et al. , Geochemical Characteristics and Tectonic Setting and of the Yueyashan-Xichangjing Ophiolite in the Beishan Area[J]. Scientia Geological Sinica 2012.86(6): 961-971.

    Google Scholar

    [37] 左国朝, 何国琦, 李红诚. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990a: 1−226.

    Google Scholar

    ZUO Guochao, HE Guoqi, LI Hongcheng. Plate tectonics and metallogenic regularity of Beishan[M]. Beijing: Peking University Press, 1990a: 1−226.

    Google Scholar

    [38] 左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990b, 04: 305-314+411

    Google Scholar

    ZUO Guochao, Zhang Shulin, He Guoqi, et al. , Early Paleozoic Plate Tectonics in Beishan Area[J]. Scientia Geological Sinica, 1990b. 04: 305-314+411.

    Google Scholar

    [39] 左国朝, 李茂松. 甘肃北山地区早古生代岩石圈形成与演化[M]. 兰州: 甘肃科学技术出版社, 1996: 1−92

    Google Scholar

    ZUO Guochao, LI Maosong. Formation and evolution of early Paleozoic lithosphere in Beishan area, Gansu Province[M]. Lanzhou: Gansu Science and Technology Press, 1996: 1−92.

    Google Scholar

    [40] 左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003(01): 1-15

    Google Scholar

    ZUO Guochao, Liu Yike, Liu Chunyan. Tectonic framework and evolution of Mengbei Mountain area in Gansu and Xinjiang[J]. Acta Geological Gansu, 2003. (01): 1-15.

    Google Scholar

    [41] Aldanmaz E. , Pearce J A. , Thirlwall M F. , et al. , Petrogenetic Evolution of late Cenozoic, Post-collision Volcanism in Western Anatolia, Turkey[J]. Journal of volcanology and geothermal research, 2000, 102(1–2): 67–95.https://doi.org/10.1016/S0377-0273(00)00182-7 doi: 10.1016/S0377-0273(00)00182-7

    CrossRef Google Scholar

    [42] Aldanmaz E, Yaliniz M K, Güctekin A, et al. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution During Variable Stages of Ocean Crust Generation[J]. Geological Magazine, 2008, 145: 37–54.https://doi.org/10.1017/S0016756807003986 doi: 10.1017/S0016756807003986

    CrossRef Google Scholar

    [43] Ao S J, Xiao W J, Windley B F, et al. , Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zirconU-Pb and 40Ar /39Ar geochronology [J]. Gondwana Research, 2016. 30: 224-235. doi: 10.1016/j.gr.2015.03.004

    CrossRef Google Scholar

    [44] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J], Journal of Asian Earth Sciences, 2002 21(1): 0-110.

    Google Scholar

    [45] Condie K C. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1): 1-18.

    Google Scholar

    [46] DePaolo D J. , Wasserburg G J. , Neodymium Isotopes in Flood Basalts From the Siberian Platform and Inferences about Their Mantle Sources[J]. Proceedings of the National Academy of Sciences, 1979, 76(7): 3056-3060. doi: 10.1073/pnas.76.7.3056

    CrossRef Google Scholar

    [47] Dilek Y. , Spontaneous subduction initiation and forearc magmatism as revealed by Phanerozoic suprasubduction zone ophiolites[J]. Geological Society of America Abstracts with Programs, 2010, 42(5): 575.

    Google Scholar

    [48] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin. 2011, 123(3-4): 387-411.

    Google Scholar

    [49] Duggen S, Hoernle K, Van D B P, et al. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology, 2005(6): 1155-1201.

    Google Scholar

    [50] GovindarajuK. , Compilation of working values and samples description for 383 Geostandards[J]. Geostandards Newsletter, 1994, 18(2): 331.

    Google Scholar

    [51] Hawkins J W. Petrologic and geochemical characteristics of marginal basin basalts[J]. Island Arcs, Deep-Sea Trenches, and Back-Arc Basins Am Geophys Union, Washington, DC, 1977. 1: 355-365.

    Google Scholar

    [52] He Z Y, Klemd R, Yan L L, et al. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1–14. doi: 10.1016/j.earscirev.2018.05.012.

    CrossRef Google Scholar

    [53] Irvine TN, Baragar WRA. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences. 1971, 8, 523-548

    Google Scholar

    [54] Li XH. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton, SE China[J]. Geochemical Journal, 1997, 31: 323-327. doi: 10.2343/geochemj.31.323

    CrossRef Google Scholar

    [55] McKenzie D. , O'Nions R K. , Partial Melt Distribution From Inversion of Rare Earth Element Concentrations[J]. Journal of Petrology, 1991. 32: 1021–1091. doi: 10.1093/petrology/32.5.1021

    CrossRef Google Scholar

    [56] Michael B. Wolf, Peter J. Wyllie. , Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time[J]. Contributions to Mineralogy and Petrology, 1994, 115(4) : 369-383 doi: 10.1007/BF00320972

    CrossRef Google Scholar

    [57] Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321

    CrossRef Google Scholar

    [58] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[A]. In: Thorpe RS (ed). Andesites: Orogenic Andesites and Related Rocks[M]. John Wiley & Sons, 1982: 525−548.

    Google Scholar

    [59] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81.

    Google Scholar

    [60] Reagan M K, Ishizuka O, Stern R J, et al. , Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): 1-17.

    Google Scholar

    [61] Schilling J G, Zajac M, Evans R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N[J]. American Journal of Science. 1983. 283(6): 510-586.

    Google Scholar

    [62] Şengör, A. , Natal'in, B. , Burtman, V. , Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993. 364: 299-307. Doi: 10.1038/364299a0

    CrossRef Google Scholar

    [63] Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982. 59(1) : 101 -118 doi: 10.1016/0012-821X(82)90120-0

    CrossRef Google Scholar

    [64] Shi Y, Li L, Kroner A, et al. , Carboniferous Alaskan-type complex along the Sino-Mongolian boundary, southern margin of the Central Asian Orogenic Belt[J]. Acta Geochim, 2017, 36(2): 276-290. doi: 10.1007/s11631-017-0145-7

    CrossRef Google Scholar

    [65] Song D F, Xiao W J, Han C M, Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review, 2013. 55, 1705-1727

    Google Scholar

    [66] Song D F, Xiao W J, Han C M, et al. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China[J]. Tectonophysics, 2014, 632: 224-243. doi: 10.1016/j.tecto.2014.06.030

    CrossRef Google Scholar

    [67] Song D F, Xiao W J, Windley B F, et al. , A Paleozoic Japan- type subduction- accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 2015 224/225: 195-213. doi: 10.1016/j.lithos.2015.03.005

    CrossRef Google Scholar

    [68] Song D F, Xiao W J, Windley B F. , et al. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt[J]. Tectonophysics, 2016. 688: 135–147. doi: 10.1016/j.tecto.2016.09.012.

    CrossRef Google Scholar

    [69] Stern C R, De Wit MJ, Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development of oceanic-type crust in a continental margin back-arc basin[J]. Geological Society, London, Special Publications, 2003,218(1): 665-683.

    Google Scholar

    [70] Sun S, Mcdonough W F. , Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications. 1989. 42(1): 313-345.

    Google Scholar

    [71] Windley B F, Alexeiev D, Xiao W, et al. , Tectonic models for accretion of the Central Asian Orogenic Belt[J]. J. geol. soc, 2007, 164(12): 31-47

    Google Scholar

    [72] S. Wang, K Zhang, B. Song, et al. , Geochronology and geochemistry of the Niujuanzi ophiolitic melange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage[J]. International Journal of Earth Sciences, 2018, 107(1): 269-289. doi: 10.1007/s00531-017-1489-2

    CrossRef Google Scholar

    [73] Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain Island Arc: Further insights into melting and mass transfer processes. Journal of Petrology, 1998. 39(9): 1641-1668DOI:10.1093/petroj/39.9.1641

    CrossRef Google Scholar

    [74] Wu T, Zheng R, Zhang W, et al. Tectonic framework of Beishan Mountain—Northern Alxa Area and the time constraints for the closing of the Paleo-Asian Ocean: proceedings of the Proceedings of the Fifth Workshop on 1: 5m International Geological Map of Asia [C]. 2011

    Google Scholar

    [75] Xiao W, Song D, Windley B F. , Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences, 2020. 63: 329–361,https://doi.org/10.1007/s11430-019-9524-6 doi: 10.1007/s11430-019-9524-6

    CrossRef Google Scholar

    [76] Xiao W J , Mao Q G , Windley B F , Paleozoic multiple accretionary andcollisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010, 310:1553–1594. https://doi.org/10.2475/10.2010.12.

    Google Scholar

    [77] Xiao W J. , Windley B F. , Han C M. , et al. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews, 2018. 186: 94–128. doi: 10.1016/j.earscirev.2017.09.020.

    CrossRef Google Scholar

    [78] Zhang W, Pease V, Wu T R, et al . Discovery of an adakite-like pluton near Dongqiyishan ( Beishan, NW China ) : Its age and tectonic significance[J]. Lithos, 2012,142/143: 148-160.

    Google Scholar

    [79] Zhao J, Zhou M. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research. 2007. 152(1-2): 27-47.

    Google Scholar

    [80] Zheng R G, Wu T R, Zhang W, et al, 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences, 62: 463-475

    Google Scholar

    [81] Zuo G C, Zhang S L, He G Q, et al. , Plate Tectonic Characteristics During the Early Paleozoic in Beishan Near the Sino Mongolian Border Region, China[J]. Tectonophysics, 1991, 188(3–4): 385–392. doi: 10.1016/0040-1951(91)90466-6.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(212) PDF downloads(58) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint