2025 Vol. 58, No. 1
Article Contents

XIANG Haoyu, LIU Song, KANG Bo, CHEN Changjun, DENG Wei, DENG Xiulin, CHEN Haoru. 2025. Geochronology and Trace Element Compositions of Zircon in Granodiorite in North Baibandi Area, Western Bangong-Nujiang Metallogenic Belt and Their Geological Significance. Northwestern Geology, 58(1): 43-51. doi: 10.12401/j.nwg.2023115
Citation: XIANG Haoyu, LIU Song, KANG Bo, CHEN Changjun, DENG Wei, DENG Xiulin, CHEN Haoru. 2025. Geochronology and Trace Element Compositions of Zircon in Granodiorite in North Baibandi Area, Western Bangong-Nujiang Metallogenic Belt and Their Geological Significance. Northwestern Geology, 58(1): 43-51. doi: 10.12401/j.nwg.2023115

Geochronology and Trace Element Compositions of Zircon in Granodiorite in North Baibandi Area, Western Bangong-Nujiang Metallogenic Belt and Their Geological Significance

More Information
  • The granodiorite in the north of Baibandi is located in Gaize County, north of the Bangong Nujiang suture zone. The field geological survey shows that granodiorite intruded into the Permian Longge Formation carbonate. Skarn alteration and copper mineralization developed along the contact zone, showing good metallogenic potential. However, due to the absence of high-precision chronology research, the genesis of the granodiorite remains poorly understanding. In this paper, the LA-ICP-MS zircon U-Pb geochronology and trace element studies were carried out on for zircon from the granodiorite in the north of Baibandi area in order to determining the age and analyzing the metallogenic potential. The results show that zircons from the granodiorite in the north of Baibandi area are all magmatic zircons. 17 zircons show weighted average 206Pb/208U ages of (154.8 ± 1.2) Ma (MSWD=1.7), showing that the granodiorite was formed in the Late Jurassic. The ƩREE values zircon of are 6.1×10−6~24.04 ×10−6 (averaging 11.68 ×10−6). The ƩLREEs and ƩHREEs values are 0.41×10−6~9.44×10−6 and 4.93×10−6~23.55×10−6, respectively, showing the enrichment of heavy rare earths. The δEu and δCe values of zircons range from 0.26 to 0.64 and 0.91 to 5.03 respectively, showing significant negative Eu anomalies and positive Ce anomalies. The Ti contents of zircon range from 0.89×10−6 to 1.43×10−6, with estimated crystallization temperature of 600.3 to 799.3 ℃ (averaging 697.6 ℃). Based on these results and the characteristics of regional tectonic evolution, it is inferred that the granodiorite in the north of Baibandi was formed during northward subduction of Bangong-Nujiang oceanic crust. Our results provide new evidence for understanding the formation of the Bangong-Nujiang metallogenic belt.

  • 加载中
  • [1] 常青松, 朱弟成, 赵志丹, 等. 西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义[J]. 岩石学报, 2011, 27(7): 2034−2044.

    Google Scholar

    CHANG Qingsong, ZHU Dicheng, ZHAO Zhidan, et al. Zircon U-Pb geochronology and Hf isotopes of Early Cretaceous rhyolites from the southern margin of the Qiangtang area, Tibet, and their significance[J]. Acta Petrologica Sinica,2011,27(7):2034−2044.

    Google Scholar

    [2] 陈华安, 祝向平, 马东方, 等. 西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J]. 地质学报, 2013, 87(10): 1593−1611.

    Google Scholar

    CHEN Hua'an, ZHU Xiangping, MA Dongfang, et al. Chronology, petrology, and metallogenic significance of mineralizing porphyries in the Bolong porphyry Cu-Au deposit, Tibet[J]. Acta Geologica Sinica,2013,87(10):1593−1611.

    Google Scholar

    [3] 陈澍民, 徐宏根, 吴金虹, 等. 湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义[J]. 西北地质, 2023, 56(6): 285−300.

    Google Scholar

    CHEN Shumin, XU Honggen, WU Jinhong, et al. Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan[J]. Northwestern Geology,2023,56(6):285−300.

    Google Scholar

    [4] 冯国胜, 廖六根, 陈振华, 等. 西藏西部日土县材玛铁多金属矿地质特征及找矿意义[J]. 地质通报, 2006, 25(S1): 267−272.

    Google Scholar

    FENG Guosheng, LIAO Liugen, CHEN Zhenhua, et al. Geological characteristics and prospecting significance of the Caimar iron-polymetallic deposit in the western part of Tibet, China[J]. Geological Bulletin of China,2006,25(S1):267−272.

    Google Scholar

    [5] 胡为正, 廖辉宝, 黄东荣. 西藏日土县材玛铁矿地质特征及找矿方向[J]. 资源调查与环境, 2014, 35(2): 120−129.

    Google Scholar

    HU Weizheng, LIAO Huibao, HUANG Dongrong. Geological characteristics and prospecting direction of the Caimar iron deposit in Ritong County, Tibet[J]. Resources Survey and Environment,2014,35(2):120−129.

    Google Scholar

    [6] 代新宇, 周斌, 李新林, 等. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义[J]. 西北地质, 2024, 57(4): 191−205.

    Google Scholar

    DAI Xinyu,ZHOU Bin,LI Xinlin,et al. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun[J]. Northwestern Geology,2024,57(4):191−205.

    Google Scholar

    [7] 李金祥, 李光明, 秦克章, 等. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约[J]. 岩石学报, 2007, 24(3): 531−543.

    Google Scholar

    LI Jinxiang, LI Guangming, QIN Kezhang, et al. Geochemical characteristics and age of porphyry-volcanic rocks in the Duobuza rich-gold porphyry copper deposit in the Bangong Lake area: Implications for metallogenic tectonic settings[J]. Acta Petrologica Sinica,2007,24(3):531−543.

    Google Scholar

    [8] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2007, 22(3): 521−533.

    Google Scholar

    PAN Guitang, MO Xuanxue, HOU Zengqian, et al. The spatial-temporal structure and evolution of the Gangdese orogenic belt[J]. Acta Petrologica Sinica,2007,22(3):521−533.

    Google Scholar

    [9] 李平, 朱涛, 吕鹏瑞, 等. 西天山早寒武世夏特辉长岩: 南天山洋早期俯冲的岩浆记录[J]. 西北地质, 2024, 57(3): 44−58.

    Google Scholar

    LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58.

    Google Scholar

    [10] 潘桂棠, 王立全, 朱弟成. 青藏高原区域地质调查中几个重大科学问题的思考[J]. 地质通报, 2004, 23(1): 12−19.

    Google Scholar

    PAN Guitang, WANG Liquan, ZHU Dicheng. Reflections on some major scientific issues in regional geological surveys of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China,2004,23(1):12−19.

    Google Scholar

    [11] 曲晓明, 王瑞江, 辛洪波, 等. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J]. 地球化学, 2009, 38(6): 523−535. doi: 10.3321/j.issn:0379-1726.2009.06.002

    CrossRef Google Scholar

    QU Xiaoming, WANG Ruijiang, XIN Hongbo, et al. Geochronology and geochemistry of igneous rocks associated with the subduction of the Bangong Lake Tethys Ocean Basin in western Tibet[J]. Geochimica,2009,38(6):523−535. doi: 10.3321/j.issn:0379-1726.2009.06.002

    CrossRef Google Scholar

    [12] 曲晓明, 辛洪波. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J]. 地质通报, 2006, 25(7): 792−799. doi: 10.3969/j.issn.1671-2552.2006.07.004

    CrossRef Google Scholar

    QU Xiaoming, XIN Hongbo. Formation age and metallogenic tectonic environment of the Bangong Lake porphyry copper belt in western Tibet[J]. Geological Bulletin of China,2006,25(7):792−799. doi: 10.3969/j.issn.1671-2552.2006.07.004

    CrossRef Google Scholar

    [13] 佘宏全, 李进文, 马东方, 等. 西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J]. 矿床地质, 2009, 28(6): 737−746. doi: 10.3969/j.issn.0258-7106.2009.06.003

    CrossRef Google Scholar

    SHE Hongquan, LI Jinwen, MA Dongfang, et al. Molybdenite Re-Os and zircon U-Pb SHRIMP dating and their geological significance in the Duobuza porphyry copper deposit, Tibet[J]. Mineral Deposits,2009,28(6):737−746. doi: 10.3969/j.issn.0258-7106.2009.06.003

    CrossRef Google Scholar

    [14] 宋扬, 唐菊兴, 曲晓明, 等. 西藏班公湖-怒江成矿带的广义概念及成矿特点[J]. 矿床地质, 2014, 33(S1): 815−816.

    Google Scholar

    SONG Yang, TANG Juxing, QU Xiaoming, et al. General concept and metallogenic characteristics of the Bangong Lake-Nujiang metallogenic belt, Tibet[J]. Mineral Deposits,2014,33(S1):815−816.

    Google Scholar

    [15] 唐菊兴. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J]. 岩石学报, 2019, 35(3): 617−624. doi: 10.18654/1000-0569/2019.03.01

    CrossRef Google Scholar

    TANG Juxing. Progress in the investigation and research of mineral resource bases in important metallogenic belts in the Qinghai-Tibet Plateau and adjacent areas[J]. Acta Petrologica Sinica,2019,35(3):617−624. doi: 10.18654/1000-0569/2019.03.01

    CrossRef Google Scholar

    [16] 王立强, 王勇, 旦真王修, 等. 班公湖—怒江成矿带西段主要岩浆热液型矿床成矿特征初探[J]. 地球学报, 2017, 38(5): 615−626. doi: 10.3975/cagsb.2017.05.03

    CrossRef Google Scholar

    WANG Liqiang, WANG Yong, DANZHEN Wangxiu, et al. Preliminary study on metallogenic characteristics of major magmatic hydrothermal deposits in the western Bangong Lake-Nujiang metallogenic belt[J]. Acta Geoscientica Sinica,2017,38(5):615−626. doi: 10.3975/cagsb.2017.05.03

    CrossRef Google Scholar

    [17] 王立强, 谢富伟, 王勇. 西藏巴嘎拉东铅锌矿床黑云母花岗岩锆石U-Pb年龄、微量元素组成及地质意义[J]. 岩矿测试, 2016, 35(6): 650−657.

    Google Scholar

    WANG Liqiang, XIE Fuwei, WANG Yong. Zircon U-Pb age, trace element composition, and geological significance of biotite granite in the Bagala East Pb-Zn deposit, Tibet[J]. Rock and Mineral Analysis,2016,35(6):650−657.

    Google Scholar

    [18] 王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.

    Google Scholar

    WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology,2023,56(6):71−81.

    Google Scholar

    [19] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    WU Yuanbao, ZHENG Yongfei. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin,2004,49(16):1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [20] 周金胜, 孟祥金, 臧文栓, 等. 西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义[J]. 岩石学报, 2013, 29(11): 3755−3766.

    Google Scholar

    ZHOU Jinsheng, MENG Xiangjin, ZANG Wenshuan, et al. Zircon U-Pb geochronology, trace element geochemistry, and geological significance of mineralized porphyries in the Qingcaoshan porphyry Cu-Au deposit, Tibet[J]. Acta Petrologica Sinica,2013,29(11):3755−3766.

    Google Scholar

    [21] AndersenT, Correction of common lead in U-Pb analyses that do not report Pb-204[J]. Chemical Geology,2002,192:59−79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [22] Belousova E A, Griffin W L, Suzanne Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002,143(5):602−622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [23] Cao M J, Qin K Z, Li G M, et al. Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet[J]. Gondwana Research,2016,39:386−400. doi: 10.1016/j.gr.2016.01.006

    CrossRef Google Scholar

    [24] Fan J J, Li C, Xie X M, et al. Petrology and U–Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos,2015,227:148−160. doi: 10.1016/j.lithos.2015.03.021

    CrossRef Google Scholar

    [25] Guynn, J H , Kapp P , Pullen A, et al. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture central Tibet[J]. Geology,2006,34:505−508.

    Google Scholar

    [26] Hao L L, Wang Q, Wyman D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245: 223-242.

    Google Scholar

    [27] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry,2003,53(1):27−62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [28] Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills[J]. Australia. Geochimica et Cosmochimica Acta,2005,69(3):637−648. doi: 10.1016/j.gca.2004.07.006

    CrossRef Google Scholar

    [29] Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos,2014,205:284−297.

    Google Scholar

    [30] Li Y L, He J, Han Z P, et al. Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction[J]. Lithos,2016,245:34−46.

    Google Scholar

    [31] Ludwig, K. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication,2003,4:1−70.

    Google Scholar

    [32] Shi R D, Yang J S, Xu Z Q, et al. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong–Nujiang suture zone[J]. Journal of Asian Earth Sciences,2008,32(5):438−457.

    Google Scholar

    [33] Shi R D. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin,2007,52(7):936−941. doi: 10.1007/s11434-007-0134-z

    CrossRef Google Scholar

    [34] Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science,2005,308:841−844.

    Google Scholar

    [35] Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology,2006,151:413−433.

    Google Scholar

    [36] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter,1995,19(1):1−23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    CrossRef Google Scholar

    [37] Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research,2004,28(1):9−39. doi: 10.1111/j.1751-908X.2004.tb01041.x

    CrossRef Google Scholar

    [38] Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research,2004,28(3):353−370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [39] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,2016,245:7−17.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(128) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint