2025 Vol. 58, No. 1
Article Contents

TIAN Zhibo, GOU Longlong, XU Xiaofei, LIU Xuefeng, MAO Zhenyu. 2025. Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt. Northwestern Geology, 58(1): 1-26. doi: 10.12401/j.nwg.2023046
Citation: TIAN Zhibo, GOU Longlong, XU Xiaofei, LIU Xuefeng, MAO Zhenyu. 2025. Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt. Northwestern Geology, 58(1): 1-26. doi: 10.12401/j.nwg.2023046

Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt

More Information
  • The laoyu area of the Qinling orogenic belt has a typical section of the Kuanping group, which is important for studying the metamorphism, deformation, and tectonothermal history of the Kuanping group. However, the metamorphic P–T conditions and chronology of the Kuanping group in this region are still lacking, which hinders our understanding of the relationship between its regional metamorphism and later deformation events, as well as their geological significances. In this study, detailed petrographic studies were carried out on two–mica quartz schist, garnet–bearing two–mica quartz schist, greenschist, and marble in the north–south section of the Kuanping group in this area. Based on this, the geological significances of multiple tectonothermal events that the Kuanping group in the Laoyu region underwent were examined with a focus on two-mica quartz schist and garnet–bearing two–mica quartz schist using Ti–in–biotite thermometry, phengite geobarometry, phase equilibrium modelling, and in situ LA–ICP–MS biotite and muscovite Rb–Sr dating. According to field and petrographic observations, two–mica quartz schist and greenschist were both significantly deformed, and phlogopite marble suffered strong mylonitization. The Ti–in–biotite thermometer and phengite geobarometer yielded the metamorphic PT conditions of 300~500 ℃ and 2.0~8.0 kbar (average values are 440 ℃ and 4.0 kbar) for the two–mica quartz schist samples KP-3 and KP-4. The Ti–in–biotite thermometry constrained the metamorphic temperature of the garnet–bearing two–mica quartz schist sample KP2202 to be 652~683 ℃. According to the PT pseudosection modeling, the metamorphic PT conditions of the two–mica quartz schists and and the garnet–bearing two–mica quartz schists are 400~480 ℃ and 2.0~10 kbar, and 645~680 ℃ and 8.0~9.0 kbar, respectively. On the basis of the results from the geothermobarometry and phase equilibrium modelling, the two–mica quartz schist is the consequence of greenschist–facies metamorphism, whereas the garnet–bearing two–mica quartz schist formed by low–amphibolite facies metamorphism. In–situ LA–ICP–MS biotite and muscovite Rb–Sr dating shows that the two–mica quartz schist records two isochron ages of ~290 Ma and ~155 Ma, while the garnet–bearing two–mica quartz schist records an isochron age of ~110 Ma. Consequently, the two–mica quartz schists in the Kuanping group of the Laoyu region record three isochron ages, which are ~290 Ma, ~155 Ma, and ~110 Ma. Combined with the results of previous studies, all three isochron ages represent the timings of late tectonothermal events, where the isochron age of ~290 Ma corresponds to the northward subduction of the paleo–Tethys Oceanic crust, while the isochron ages of ~155 Ma and ~110 Ma may be related to the intense deformation and thermal resetting caused by granitic magmatism in the North Qinling tectonic belt during the Mesozoic.

  • 加载中
  • [1] 陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89.

    Google Scholar

    CHEN Longlong, TANG Li, SHEN Yanmou, et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology, 2024, 57(2): 67−89.

    Google Scholar

    [2] 陈能松, 韩郁菁, 游振东, 等. 豫西东秦岭造山带核部杂岩全岩Sm-Nd、Rb-Sr和单晶锆石~(207)Pb-~(206)Pb计时及其地壳演化[J]. 地球化学, 1991(03): 219–228 doi: 10.3321/j.issn:0379-1726.1991.03.003

    CrossRef Google Scholar

    CHEN Nengsong, HAN Yuqing, YOU Zhendong, et al. Whole-rock Sm–Nd, Rb–Sr, and single grain zircon Pb–Pb dating of complex rocks from the interior of the Qinling orogenic belt, Western Henan and its crustal evolution[J]. Geochemica, 1991, 20(3): 219–228. doi: 10.3321/j.issn:0379-1726.1991.03.003

    CrossRef Google Scholar

    [3] 丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICPMS 锆石 U–Pb 年龄及其构造意义[J]. 地球化学, 2010, 39(5): 401–413

    Google Scholar

    DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICPMS zircon U–Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China craton: Implications for tectonic setting[J]. Geochimica, 2010, 39(5): 401–413.

    Google Scholar

    [4] 第五春荣, 孙勇, 刘良, 等. 北秦岭宽坪杂岩的解体及新元古代 N-MORB[J]. 岩石学报, 2010 (7): 2025–2038

    Google Scholar

    DIWU Chunrong, SUN Yong, LIU Liang, et al. The disintegration of Kuanping Group in North Qinling orogenic belts and Neo-proterozoic N-MORB[J]. Acta Petrologica Sinica, 2010, 26(7): 2025–2038.

    Google Scholar

    [5] 胡娟. 桐柏北部宽坪群变质作用研究[D]. 北京: 中国地质科学院, 2010

    Google Scholar

    HU Juan. Study on metamorphism of the KuanPing Group, northern Tongba[D]. Beijing: Chinese Academy of Geological Sciences, 2010.

    Google Scholar

    [6] 李康宁, 汤庆艳, 栾晓刚, 等. 西秦岭三叠纪大河坝组砂岩构造背景与物质来源[J]. 西北地质, 2024, 57(3): 113−127.

    Google Scholar

    LI Kangning, TANG Qingyan, LUAN Xiaogang, et al. Tectonic Setting and Provenance of Sandstones from Triassic Daheba Formation in the West Qinling Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 113−127.

    Google Scholar

    [7] 李靠社. 陕西宽坪杂岩变基性熔岩锆石 U–Pb 年龄[J]. 陕西地质, 2002, 20(1): 72–78 doi: 10.3969/j.issn.1001-6996.2002.01.010

    CrossRef Google Scholar

    LI Kaoshe. Zircon U–Pb age of meta-basic lava from the Kuanping Rock Group, Shaanxi Province[J]. Geology of Shaanxi, 2002, 20(1): 72–78. doi: 10.3969/j.issn.1001-6996.2002.01.010

    CrossRef Google Scholar

    [8] 李三忠, 张国伟, 李亚林, 等. 勉县地区勉略带内麻粒岩的发现及构造意义[J]. 岩石学报, 2000, 16(2): 220–226 doi: 10.3321/j.issn:1000-0569.2000.02.011

    CrossRef Google Scholar

    LI Sanzhong, ZHANG Guowei, LI Yalin, et al. Discovery of granulite in the Mianxian-Lueyang suture zone, Mianxian area and its tectonic significance[J]. Acta Petrologica Sinica, 2000, 16(2): 220–226. doi: 10.3321/j.issn:1000-0569.2000.02.011

    CrossRef Google Scholar

    [9] 刘良, 陈丹玲, 王超, 等. 阿尔金, 柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报: 自然科学版, 2009 (3): 472–479.

    Google Scholar

    LIU Liang, CHEN Danling, WANG Chao, et al. New progress on geochronology of high-pressure/ultrahigh-pressure metamorphic rocks from the South Altyn Tagh, the North Qaidam and the North Qinling orogenic, NW China and their geological significance[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(3): 472–479.

    Google Scholar

    [10] 刘良, 廖小莹, 张成立, 等. 北秦岭高压-超高压岩石的多期变质时代及其地质意义[J]. 岩石学报, 2013, 29(5): 1634–1656

    Google Scholar

    LIU Liang, LIAO Xiaoying, ZHANG Chengli, et al. , Multi-metamorphic timings of HP-UHP rocks in the North Qingling and their geological implications[J], Acta Petrologica Sinica, 2013, 29(5): 1634–1656.

    Google Scholar

    [11] 马大铨, 李志昌, 肖志发. 鄂西崆岭杂岩的组成, 时代及地质演化[J]. 地球学报: 中国地质科学院院报, 1997, 18(3): 233–241

    Google Scholar

    MA Daquan, LI Zhichang, XIAO Zhifa. The constitute, geochronology and geologic evolution of the Kongling complex, western Hubei[J]. Acta Geoscientia Sinica, 1997, 18(3): 233–241.

    Google Scholar

    [12] 秦海鹏, 吴才来, 武秀萍, 等. 秦岭造山带蟒岭花岗岩锆石 LA-ICP-MSU-Pb 年龄及其地质意义[J]. 地质论评, 2012, 58(4): 783–793 doi: 10.3969/j.issn.0371-5736.2012.04.019

    CrossRef Google Scholar

    QIN Haipeng, WU Cailai, WU Xiuping, et al. LA-ICP-MS Zircon U-Pb ages and implications for tectonic setting of the Mangling granitoid plutons in Qinling Orogen Belt[J]. Geological Review, 2012, 58(4): 783–793. doi: 10.3969/j.issn.0371-5736.2012.04.019

    CrossRef Google Scholar

    [13] 冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.

    Google Scholar

    RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.

    Google Scholar

    [14] 陕西省地质局区测队. 东江口幅I-49-19 1/20万地质图矿产图说明书[DS]. 全国地质资料馆, 1966

    Google Scholar

    [15] 陕西地质局13队. 西安幅I-49-13 1/20万地质矿产图及其说明书[DS]. 全国地质资料馆, 1972

    Google Scholar

    [16] 魏春景, 朱文萍. 多硅白云母地质压力计的研究进展[J]. 地质通报, 2007, 26(9): 1123–1130 doi: 10.3969/j.issn.1671-2552.2007.09.014

    CrossRef Google Scholar

    WEI Chunjing, ZHU Wenping. Progress in the study of phengite geobarometry[J]. Geological Bulletin of China, 2007, 26(9): 1123–1130. doi: 10.3969/j.issn.1671-2552.2007.09.014

    CrossRef Google Scholar

    [17] 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义. 西北地质, 2023, 56(1): 48−62.

    Google Scholar

    WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling. Northwestern Geology, 2023, 56(1): 48−62.

    Google Scholar

    [18] 王宗起, 闫臻, 王涛, 等. 秦岭造山带主要疑难地层时代研究的新进展[J]. 地球学报, 2009, 30(5): 561–570 doi: 10.3321/j.issn:1006-3021.2009.05.001

    CrossRef Google Scholar

    WANG Zongqi, YAN Zhen, WANG Tao, et al. New advances in the study on ages of metamorphic strata in the Qinling orogenic belt[J]. Acta Geoscientica Sinica, 2009, 30(5): 561–570. doi: 10.3321/j.issn:1006-3021.2009.05.001

    CrossRef Google Scholar

    [19] 王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布, 成因演变及构造意义[J]. 岩石学报, 2011, 27(6): 1573–1593

    Google Scholar

    WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 27(6): 1573–1593.

    Google Scholar

    [20] 王海杰, 陈丹玲, 任云飞, 等. 北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石 U-Pb 年代学与变质作用证据[J]. 岩石学报, 2021, 37(5): 1489–1507 doi: 10.18654/1000-0569/2021.05.10

    CrossRef Google Scholar

    WANG HaiJie, CHEN DanLing, REN YunFei, et al. The relationship between the North Qinling Belt and the North China Craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping Complex[J]. Acta Petrologica Sinica, 2021, 37(5): 1489–1507. doi: 10.18654/1000-0569/2021.05.10

    CrossRef Google Scholar

    [21] 肖思云, 张维吉, 宋子季, 等. 北秦岭变质地层[M]. 西安: 西安交通大学出版社, 1988

    Google Scholar

    [22] 向华, 钟增球, 李晔, 等. 北秦岭造山带早古生代多期变质与深熔作用: 锆石 U–Pb 年代学证据[J]. 岩石学报, 2014 (8): 2421–2434

    Google Scholar

    XIANG Hua, ZHONG ZengQiu, LI Ye, et al. Early Paleozoic polymetamorphism and anatexis in the North Qinling orogen: Evidence from U-Pb zircon geochronology[J]. Acta Petrologica Sinica, 2014, 30(8): 2421-2434.

    Google Scholar

    [23] 杨阳, 王晓霞, 柯昌辉, 等. 北秦岭蟒岭岩体的锆石 U-Pb 年龄, 地球化学及其演化[J]. 矿床地质, 2014, 33(1): 14-36 doi: 10.3969/j.issn.0258-7106.2014.01.002

    CrossRef Google Scholar

    YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb ages, geochemistry and evolution of Mangling pluton in North Qinling Mountains[J]. Mineral Deposits, 2014, 33(1): 14–36. doi: 10.3969/j.issn.0258-7106.2014.01.002

    CrossRef Google Scholar

    [24] 闫全人, 王宗起, 闫臻, 等. 秦岭造山带宽坪群中的变铁镁质岩的成因, 时代及其构造意义[J]. 地质通报, 2008, 27(9): 1475–1492 doi: 10.3969/j.issn.1671-2552.2008.09.010

    CrossRef Google Scholar

    YAN Quanren, WANG Zongqi, YAN Zhen, et al. Origin, age and tectonic implications of metamafic rocks in the Kuanping Group of the Qinling orogenic belt, China[J]. Geological Bulletin of China, 2008, 27(9): 1475-1492. doi: 10.3969/j.issn.1671-2552.2008.09.010

    CrossRef Google Scholar

    [25] 张维吉. 宽坪群的层序划分及时代归属[J]. 长安大学学报 (地球科学版), 1987, 1(9): 15–29

    Google Scholar

    ZHANG Weiji. The subdivision of the Kuanping Group and its geological date[J]. Journal of Xi'an College of Geology, 1987, 1(9): 15–29.

    Google Scholar

    [26] 张维吉, 马志和. 陕西蟒岭马河地区宽坪群多期褶皱变形[J]. 西安地质学院学报, 1988, (04), 33–42

    Google Scholar

    ZHANG Weiji, MA Zhihe. The polydeformation of Kuanping Group at Mahe of Mangling, Shaanxi Province[J]. Journal of Xi’an College of Geology, 1988, (04), 33–42

    Google Scholar

    [27] 张维吉, 李育敬. 陶湾群层序及时代研究[J]. 西安地质学院学报, 1989, 11(2): 1–10.

    Google Scholar

    ZHANG Weiji, LI Yujing. The sequences and the age of the Taowan Group[J]. Journal of Xi’an College of Geology, 1989, 11(2), 1–10

    Google Scholar

    [28] 张宗清, 刘敦一, 付国民. 北秦岭变质地层同位素年代硏究[M]. 北京:地质出版社, 1994

    Google Scholar

    [29] 张成立, 韩松. 陕西商州地区丹凤变质火山岩的地球化学特征[J]. 地质科学, 1994, 29(4): 384–392

    Google Scholar

    ZHANG Chengli, HAN Song. The geochemical characteristics of Danfeng metavolcanic rocks in Shangzhou area, Shaanxi province[J]. Chinese Journal of Geology, 1994, 29(4): 384–392.

    Google Scholar

    [30] 张宗清, 张旗. 北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征[J]. 岩石学报, 1995 (S1): 165–177 doi: 10.3321/j.issn:1000-0569.1995.z1.013

    CrossRef Google Scholar

    ZHANG Zongqin, ZHANG Qi. Geochemistry of metamorphosed late Proterozoic Kuanping ophiolite in the northern Qinling, China[J]. Acta Petrologica Sinica, 1995, 11(Suppl. ): 165–177. doi: 10.3321/j.issn:1000-0569.1995.z1.013

    CrossRef Google Scholar

    [31] 张国伟, 孟庆任, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学: B 辑, 1995a, 25(9): 994–1003

    Google Scholar

    ZHANG Guowei, MENG Qingren, LAI Shaocong. Structural structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 25: 994–1003.

    Google Scholar

    [32] 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995b, 11(2): 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002

    CrossRef Google Scholar

    ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of main tectono-lithostratigraphic units of the Qinling orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 1995, 11: 101–114. doi: 10.3321/j.issn:1000-0569.1995.02.002

    CrossRef Google Scholar

    [33] 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京:科学出版社, 2001.

    Google Scholar

    [34] 张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(3): 304 doi: 10.3969/j.issn.1006-7493.2008.03.003

    CrossRef Google Scholar

    ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt[J]. Geological Journal of China Universities, 2008, 14(3): 304. doi: 10.3969/j.issn.1006-7493.2008.03.003

    CrossRef Google Scholar

    [35] 张建新, 于胜尧, 孟繁聪. 北秦岭造山带的早古生代多期变质作用[J]. 岩石学报, 2011, 27(04): 1179–1190

    Google Scholar

    ZHANG Jianxin, YU Shengyao, MENG Fancong. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(4): 1179–1190.

    Google Scholar

    [36] Chen D L, Liu L, Sun Y, et al. LA-ICP-MS zircon U-Pb dating for high-pressure basic granulite from North Qinling and its geological significance[J]. Chinese Science Bulletin, 2004, 49: 2296–2304. doi: 10.1360/03wd0544

    CrossRef Google Scholar

    [37] Capitani, D C , Petrakakis, K. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American mineralogist, 2010, 95(7): 1006–1016. doi: 10.2138/am.2010.3354

    CrossRef Google Scholar

    [38] Cao H H, Li S Z, Zhao S J, et al. Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean[J]. Precambrian Research, 2016, 279: 1–16. doi: 10.1016/j.precamres.2016.04.001

    CrossRef Google Scholar

    [39] Cheng H, Zhang C, Vervoort J D, et al. Timing of eclogite facies metamorphism in the North Qinling by U–Pb and Lu–Hf geochronology[J]. Lithos, 2012, 136: 46–59.

    Google Scholar

    [40] Diwu C R, Sun Y, Lin C L, et al. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton[J]. Chinese Science Bulletin, 2010, 55: 2557–2571.

    Google Scholar

    [41] Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 2011a, 41(3): 213–237. doi: 10.1016/j.jseaes.2011.03.002

    CrossRef Google Scholar

    [42] Dong Y P, Zhang G W, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen: evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011b, 122(1–2): 39–56.

    Google Scholar

    [43] Dong Y P, Genser J, Neubauer F, et al. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China[J]. Gondwana Research, 2011c, 19(4): 881–893. doi: 10.1016/j.gr.2010.09.007

    CrossRef Google Scholar

    [44] Dong Y P, Yang Z, Liu X M, et al. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite[J]. Precambrian Research, 2014, 255: 77–95. doi: 10.1016/j.precamres.2014.09.008

    CrossRef Google Scholar

    [45] Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1–40. doi: 10.1016/j.gr.2015.06.009

    CrossRef Google Scholar

    [46] Dong Y P, Yang Z, Liu X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016b, 30: 144–158. doi: 10.1016/j.gr.2015.05.004

    CrossRef Google Scholar

    [47] Dong Y P, Sun S S, Yang Z, et al. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 2017, 293: 73–90. doi: 10.1016/j.precamres.2017.02.015

    CrossRef Google Scholar

    [48] Dong Y P, Neubauer F, Genser J, et al. Timing of orogenic exhumation processes of the Qinling orogen: Evidence from 40Ar/39Ar dating[J]. Tectonics, 2018, 37(10): 4037–4067. doi: 10.1029/2017TC004765

    CrossRef Google Scholar

    [49] Dong Y P, Sun S S, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131–194. doi: 10.1016/j.gr.2021.03.006

    CrossRef Google Scholar

    [50] Dong Y P, Sun S S, Santosh M, et al. Cross Orogenic belts in Central China: Implications for the tectonic and paleogeographic evolution of the east Asian continental collage[J]. Gondwana Research, 2022, 109: 18–88. doi: 10.1016/j.gr.2022.04.012

    CrossRef Google Scholar

    [51] England P C, Thompson A B. Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 1984, 25(4): 894–928. doi: 10.1093/petrology/25.4.894

    CrossRef Google Scholar

    [52] Gao S, Zhang B R, Li Z J. Geochemical evidence for Proterozoic continental arc and continental-margin rift magmatism along the northern margin of the Yangtze Craton, South China[J]. Precambrian Research, 1990, 47(3–4): 205–221.

    Google Scholar

    [53] Gao S, Ling W, Qiu Y, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13–14): 2071–2088.

    Google Scholar

    [54] Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of science, 2011, 311(2): 153–182. doi: 10.2475/02.2011.03

    CrossRef Google Scholar

    [55] Gao S, Zhang B R, Wang D P, et al. Geochemical evidence for the Proterozoic tectonic evolution of the Qinling Orogenic Belt and its adjacent margins of the North China and Yangtze cratons[J]. Precambrian Research, 1996, 80(1–2): 23–48.

    Google Scholar

    [56] Gorojovsky L, Alard O. Optimisation of laser and mass spectrometer parameters for the in situ analysis of Rb/Sr ratios by LA-ICP-MS/MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2322–2336. doi: 10.1039/D0JA00308E

    CrossRef Google Scholar

    [57] Guo J L, Gao S, Wu Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242: 82–95. doi: 10.1016/j.precamres.2013.12.018

    CrossRef Google Scholar

    [58] Harley S L. The origins of granulites: a metamorphic perspective[J]. Geological Magazine, 1989, 126(3): 215–247. doi: 10.1017/S0016756800022330

    CrossRef Google Scholar

    [59] Henry D J, Guidotti C V, Thomson J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. American mineralogist, 2005, 90(2–3): 316–328.

    Google Scholar

    [60] He Y H, Zhao G C, Sun M, et al. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton[J]. Precambrian Research, 2009, 168(3–4): 213–222.

    Google Scholar

    [61] Holland T J B, Powell R. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of metamorphic Geology, 1998, 16(3): 309–343.

    Google Scholar

    [62] Holland T, Powell R. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 2003, 145: 492–501. doi: 10.1007/s00410-003-0464-z

    CrossRef Google Scholar

    [63] Holland T J B, Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of metamorphic Geology, 2011, 29(3): 333–383. doi: 10.1111/j.1525-1314.2010.00923.x

    CrossRef Google Scholar

    [64] Hu J, Liu X C, Chen L Y, et al. A ∼2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58: 3564–3579. doi: 10.1007/s11434-013-5904-1

    CrossRef Google Scholar

    [65] Lai S, Zhang G, Yang R. Identification of the island-arc magmatic zone in the Lianghe-Raofeng-Wuliba area, south Qinling and its tectonic significance[J]. Science in China Series D: Earth Sciences, 2000, 43: 69–81. doi: 10.1007/BF02911934

    CrossRef Google Scholar

    [66] Li S, Hou Z, Yang Y, et al. Timing and geochemical characters of the Sanchazi magmatic arc in Mianlue tectonic zone, South Qinling[J]. Science in China Series D: Earth Sciences, 2004, 47(4): 317–328. doi: 10.1360/02YD0490

    CrossRef Google Scholar

    [67] Liu X C, Jahn B M, Hu J, et al. Metamorphic patterns and SHRIMP zircon ages of medium‐to‐high grade rocks from the Tongbai orogen, central China: implications for multiple accretion/collision processes prior to terminal continental collision[J]. Journal of Metamorphic Geology, 2011, 29(9): 979–1002. doi: 10.1111/j.1525-1314.2011.00952.x

    CrossRef Google Scholar

    [68] Liu X C, Jahn B M, Li S Z, et al. U‐Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 2013, 599: 67–88. doi: 10.1016/j.tecto.2013.04.003

    CrossRef Google Scholar

    [69] Liu Q, Wu Y B, Wang H, et al. Zircon U–Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications[J]. Journal of Metamorphic Geology, 2014, 32(2): 177–193. doi: 10.1111/jmg.12065

    CrossRef Google Scholar

    [70] Liu L, Liao X, Wang Y, et al. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation[J]. Earth-Science Reviews, 2016, 159: 58–81. doi: 10.1016/j.earscirev.2016.05.005

    CrossRef Google Scholar

    [71] Liao X Y, Liu L, Zhai M G, et al. Metamorphic evolution and Petrogenesis of garnet–corundum silica–undersaturated metapelitic granulites: A new case study from the Mianlüe Tectonic Zone of South Qinling, Central China[J]. Lithos, 2021, 392: 106154.

    Google Scholar

    [72] Massonne H J, Szpurka Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems k2o-mgo-al2o3-sio2-h2o and k2o-feo-al2o3-sio2-h2o[J]. Lithos, 1997, 41(1–3): 229–250.

    Google Scholar

    [73] Mao X H, Zhang J X, Yu S Y, et al. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen: Monazite and zircon U-Pb geochronological constraints[J]. Science China Earth Sciences, 2017, 60: 943–957. doi: 10.1007/s11430-016-9029-7

    CrossRef Google Scholar

    [74] Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1–2): 1–53.

    Google Scholar

    [75] Smye A J, Greenwood L V, Holland T J B. Garnet–chloritoid–kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts[J]. Journal of Metamorphic Geology, 2010, 28(7): 753–768. doi: 10.1111/j.1525-1314.2010.00889.x

    CrossRef Google Scholar

    [76] Shi Y, Yu J H, Santosh M. Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U–Pb geochronology and Hf isotopes[J]. Precambrian Research, 2013, 231: 19–60. doi: 10.1016/j.precamres.2013.03.001

    CrossRef Google Scholar

    [77] Sun S, Dong Y, He D, et al. Thickening and partial melting of the Northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites[J]. Journal of the Geological Society, 2019, 176(6): 1218–1231. doi: 10.1144/jgs2019-030

    CrossRef Google Scholar

    [78] Thompson A B, England P C. Pressure—temperature—time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks[J]. Journal of Petrology, 1984, 25(4): 929–955. doi: 10.1093/petrology/25.4.929

    CrossRef Google Scholar

    [79] Wang C Y, Alard O, Lai Y J, et al. Advances in in-situ Rb-Sr dating using LA-ICP-MS/MS: applications to igneous rocks of all ages and to the identification of unrecognized metamorphic events[J]. Chemical Geology, 2022, 610: 121073. doi: 10.1016/j.chemgeo.2022.121073

    CrossRef Google Scholar

    [80] Wang X L, Jiang S Y, Dai B Z. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton[J]. Precambrian Research, 2010, 182(3): 204–216. doi: 10.1016/j.precamres.2010.08.007

    CrossRef Google Scholar

    [81] Wang Z Q, Gao L D, Wang T, et al. Microfossils from the siltstones and muddy slates: Constraint on the age of the Taowan Group in the Northern Qinling Orogenic Belt, Central China[J]. Science in China Series D: Earth Sciences, 2008, 51: 172–180. doi: 10.1007/s11430-007-0140-7

    CrossRef Google Scholar

    [82] Wang H, Wu Y B, Gao S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology, 2011, 29(9): 1019–1031. doi: 10.1111/j.1525-1314.2011.00955.x

    CrossRef Google Scholar

    [83] Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129–151. doi: 10.1016/j.jseaes.2012.11.037

    CrossRef Google Scholar

    [84] Wang X X, Wang T, Zhang C L. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 2015, 58: 1497–1512. doi: 10.1007/s11430-015-5150-2

    CrossRef Google Scholar

    [85] Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals[J]. American mineralogist, 2010, 95(1): 185–187. doi: 10.2138/am.2010.3371

    CrossRef Google Scholar

    [86] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402–1428. doi: 10.1016/j.gr.2012.09.007

    CrossRef Google Scholar

    [87] White R W, Powell R, Holland T J B, et al. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3[J]. Journal of Metamorphic Geology, 2000, 18(5): 497–511. doi: 10.1046/j.1525-1314.2000.00269.x

    CrossRef Google Scholar

    [88] White R W, Powell R, Johnson T E. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese‐bearing minerals[J]. Journal of Metamorphic Geology, 2014a, 32(8): 809–828. doi: 10.1111/jmg.12095

    CrossRef Google Scholar

    [89] White R W, Powell R, Holland T J B, et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 2014, 32(3): 261–286. doi: 10.1111/jmg.12071

    CrossRef Google Scholar

    [90] Wu C M, Chen H X. Revised Ti-in-biotite geothermometer for ilmenite-or rutile-bearing crustal metapelites[J]. Science Bulletin, 2015, 60: 116–121. doi: 10.1007/s11434-014-0674-y

    CrossRef Google Scholar

    [91] Woodhead J D, Hergt J M. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614[J]. Geostandards Newsletter, 2001, 25(2–3): 261–266.

    Google Scholar

    [92] Xu J, Wang Q, Yu X. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: evidence of partial melting of the subducted Paleo-Tethyan crust[J]. Geochemical Journal, 2000, 34(5): 359–377. doi: 10.2343/geochemj.34.359

    CrossRef Google Scholar

    [93] Xue F, Lerch M F, Kröner A, et al. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: a review and new tectonic model[J]. Tectonophysics, 1996a, 253(3–4): 271–284.

    Google Scholar

    [94] Xue F, Kröner A, Reischmann T, et al. Palaeozoic pre-and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks[J]. Journal of the Geological Society, 1996, 153(3): 409–417. doi: 10.1144/gsjgs.153.3.0409

    CrossRef Google Scholar

    [95] Xue Y Y, Liu H Y, Wang Z Y, et al. Reworking of the Juvenile Crust in the Late Mesozoic in North Qinling, Central China. Journal of Earth Science, 2022, 33(3): 623–641.

    Google Scholar

    [96] Zhai X M, Day H W, Hacker B R, et al. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China[J]. Geology, 1998, 26(4): 371–374. doi: 10.1130/0091-7613(1998)026<0371:PMITQO>2.3.CO;2

    CrossRef Google Scholar

    [97] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006a, 252(1–2): 56–71.

    Google Scholar

    [98] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006b, 146(1–2): 16–34.

    Google Scholar

    [99] Zhang Q Q, Gao X Y, Chen R X, et al. Granulites record the tectonic evolution from collisional thickening to extensional thinning of the Tongbai orogen in central China[J]. Journal of Metamorphic Geology, 2020, 38(3): 265–295. doi: 10.1111/jmg.12522

    CrossRef Google Scholar

    [100] Zhao T, Zhai M, Xia B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49: 2495–2502.

    Google Scholar

    [101] Zhao G C, He Y H, Sun M. The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana research, 2009, 16(2): 170v181.

    Google Scholar

    [102] Zhao S J, Li S Z, Liu X, et al. The northern boundary of the Proto-Tethys Ocean: Constraints from structural analysis and U–Pb zircon geochronology of the North Qinling Terrane[J]. Journal of Asian earth sciences, 2015, 113: 560–574. doi: 10.1016/j.jseaes.2015.09.005

    CrossRef Google Scholar

    [103] Zhao Y H, Gou L L, Long X P, et al. Zircon U–Pb geochronology and clockwise P–T evolution of garnet-bearing migmatites from the Qinling complex in the Weiziping area of the Qinling Orogen, Central China: Implications for thermal relaxation after crustal thickening[J]. Journal of Asian Earth Sciences, 2020, 195: 104354. doi: 10.1016/j.jseaes.2020.104354

    CrossRef Google Scholar

    [104] Zhu X Y, Chen F, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: evidence from detrital zircon U–Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194–204. doi: 10.1016/j.gr.2010.12.009

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(9)

Article Metrics

Article views(283) PDF downloads(62) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint