2024 Vol. 57, No. 5
Article Contents

LI Haifeng, JIANG Xidong, YU Haibin, HAI Lianfu, LIU Xiangdong. 2024. Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia. Northwestern Geology, 57(5): 181-191. doi: 10.12401/j.nwg.2023025
Citation: LI Haifeng, JIANG Xidong, YU Haibin, HAI Lianfu, LIU Xiangdong. 2024. Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia. Northwestern Geology, 57(5): 181-191. doi: 10.12401/j.nwg.2023025

Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia

  • The Kujinggou graphite deposit is located in the southern area of Weining Beishan, Ningxia and Alashan Zuoqi, Inner Mongolia. The ore body is hosted in the regional metamorphic rocks of the Lower Carboniferous Chouniugou Formation, and the original rocks are sedimentary construction of shallow marine terrestrial clastic and carbonate rocks. The ore body is distributed in parallel layers in the metamorphic quartz sandstone, which is basically consistent with the stratigraphic production, with a near east-west orientation. The ore is mainly graphite-bearing carbonaceous slate with an average fixed carbon content of 5.53%. Graphite is mainly produced as irregularly scaled single crystals or as massive polycrystalline assemblages, mostly larger than 1 μm. Graphite ore is characterized by low Si, low alkali and high LOI as a whole, and trace element analysis shows enrichment of Rb, Ba and Sr. The ∑REE of graphite ore ranges from 101×10−6 to 137×10−6, with an average of 117×10−6, and the ∑REE of the host rocks is 42×10−6. The REE distribution patterns of both graphite ore and host rocks are high on the left and low on the right, and the ∑REE in graphite ore is higher than that in host rocks, which shows a high degree of REE differentiation in ore and host rocks in general, and a significant enrichment of LREE. The negative anomalies of Eu and Ce are obvious. The carbon isotope values of the graphite ore vary very little and are concentrated between −24.3‰ and −24.0‰, indicating that the carbonaceous source is mainly organic with some inorganic carbon involved. The genesis type of this deposit is regional metamorphic, and the shallow marine and lagoonal sedimentary environment makes the material basis for the graphite formation in Kujinggou, graphite formation is closely related to regional metamorphic deformation

  • 加载中
  • [1] 艾宁, 任战利, 李文厚, 等. 宁夏卫宁北山地区矿床类型及成矿时代[J]. 矿床地质, 2011, 30(05): 941-948

    Google Scholar

    Ai Ning, REN Zhanli, LI Wenhou, et al. Metallogenic epoch and ore-forming types of ore deposits in Weiningbeishan area, Ningxia [J]. Mineral Deposits, 2011, 30(05): 941-948.

    Google Scholar

    [2] 陈衍景, 刘丛强, 陈华勇, 等. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 2000, 16(2): 233-244

    Google Scholar

    CHEN Yanjing, LIU Congqiang, CHEN Huayong, et al. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems [J]. Acta Petrologica Sinica, 2000, 16(2): 233-244.

    Google Scholar

    [3] 陈正国, 颜玲亚, 高树学. 战略性非金属矿产资源形势分析[J]. 中国非金属矿工业导刊, 2021, 2: 1–8, 23 doi: 10.3969/j.issn.1007-9386.2021.02.001

    CrossRef Google Scholar

    CHEN Zhengguo, YAN Yalin, GAO Shuxue. Analysis on the situation of strategic non-metallic mineral resources [J]. China Non-metallic Minerals Industry, 2021, 2: 1–8, 23. doi: 10.3969/j.issn.1007-9386.2021.02.001

    CrossRef Google Scholar

    [4] 程仕俊, 亢威, 周勇, 等, . 四川南江柏林坪石墨矿床成因: 岩石及 C-O 同位素地球化学约束[J]. 桂林理工大学学报, 2021, 41(4): 1-10

    Google Scholar

    CHENG Shijun, KANG Wei, ZHOU Yong, et al. Genesis of the Bolingping graphite deposit in Nanjiangm Sichuan: constraints of lithological and C-O isotopic geochemistry [J]. Journal of Guilin University of Technology, 2021, 41(4): 1-10.

    Google Scholar

    [5] 段威,唐文春,黄健华,等 .四川旺苍大河坝晶质石墨矿地质特征及成因[J].矿产与地质,2020,34(06):15-27.

    Google Scholar

    DUAN Wei, TANG Wenchun, HUANG Jianhua, et al. Geological characteristics and genesis of Dahaba crystalline graphite deposit in Wangcang, Sichuan [J]. Mineral Resources and Geology, 2020, 34(6): 15-27.

    Google Scholar

    [6] 郭佩, 刘池洋, 韩鹏, 等. 鄂尔多斯盆地西南缘下—中侏罗统碎屑锆石 U-Pb 年代学及其地质意义[J]. 大地构造与成矿学, 2017, 41(5): 892–907

    Google Scholar

    GUO Pei, LIU Chiyang, HAN Peng, et al. Geochemistry of detrital zircon form the lower-middle Jurassic strata in the southwestern Ordos basin, China, and its geological significance [J]. Geotectonica et Metallogenia, 2017, 41(5): 892–907.

    Google Scholar

    [7] 海连富, 刘安璐, 陶瑞, 等. 宁夏卫宁北山金场子金矿床流体来源及矿床成因: 来自流体包裹体和C-H-O同位素证据[J]. 地球科学, 2021, 46(12): 4274-4290

    Google Scholar

    HAI Lianfu, LIU Anlu, TAO Rui, et al. Source of fluid and genesis of Jinchangzi gold deposit in Weiningbeishan Ningxia: Evidence from fluid inclusions and C-H-O isotopes [J]. Earth Science, 2021, 46(12): 4274-4290.

    Google Scholar

    [8] 霍福臣, 潘行适, 尤国林, 等. 宁夏地质概论[M]. 北京: 科学出版社, 1989

    Google Scholar

    HUO Fuchen, PAN Xingshi, YOU Guolin, et al. Introduction to geology of Ningxia [M]. Beijing: Geological Publishing House, 1989.

    Google Scholar

    [9] 李红霞, 白生明, 黄玮, 等, . 浅析宁夏卫宁北山地区石炭纪地层沉积特征及演化规律[J]. 宁夏工程技术, 2016, 15(3): 217-222

    Google Scholar

    LI Hongxia, BAI Shengming, HUANG Wei, et al. A brief analysis on sedimentary features and evolvement rules of Carboniferous strata in Weining North Mountain area of Ningxia [J]. Ningxia Engineering Technology, 2016, 15(3): 217-222.

    Google Scholar

    [10] 梁利东, 黄瑞. 可控源音频大地电磁测深在卫宁北山石墨调查中的应用 [J]. 中国非金属矿工业导刊, 2020, 2: 49-53.

    Google Scholar

    [11] 刘敬党, 肖荣阁, 张艳飞, 等. 华北显晶质石墨矿床[M]. 北京: 科学出版社, 2017.

    Google Scholar

    [12] 刘勇, 李延栋, 王彦斌, 等. 宁夏卫宁北山金场子闪长玢岩岩脉地质特征及SHRIMP锆石U-Pb年龄[J]. 中国地质, 2010, 37(6): 1575-1583

    Google Scholar

    LIU Yong, LI Tingdong, WANG Yanbin, et al. Geological characteristics and zircon SHRIMP U-Pb data of Jinchangzi dioritic porphyrite dykes in Zhongwei city, Ningxia [J]. Geology in China, 2010, 37(6): 1575-1583.

    Google Scholar

    [13] 彭素霞, 陈向阳, 陈隽璐, 等. 新疆东准噶尔地区石墨矿成矿特征及成因探讨[J]. 西北地质, 2018, 51(4): 194-201

    Google Scholar

    PENG Suxia, CHEN Xiangyang, CHEN Junlu, et al. Metallogenic Geological Characteristics and Genesis of the Graphite Ore Belt in East Junggar, Xinjiang[J]. Northwestern Geology, 2018, 51(4): 194-201.

    Google Scholar

    [14] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209

    Google Scholar

    WANG Denghong. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation [J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.

    Google Scholar

    [15] 王仁民, 贺高品, 陈珍珍, 等. 变质岩原岩图解判别法 [M]. 北京: 地质出版社,1986, 4-7+163-165.

    Google Scholar

    [16] 颜玲亚, 高树学, 陈正国, 等. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 2018, 45(3): 421-440

    Google Scholar

    YAN Lingya, GAO Shuxue, CHEN Zhengguo, et al. Metallogenic characteristics and metallogenic zoning of graphite deposits in China [J]. Geology in China, 2018, 45(3): 421-440.

    Google Scholar

    [17] 杨季华, 罗重光, 杜胜江, 等. 高黏土含量沉积岩古环境指标适用性讨论. 矿物学报, 2020, 40(6): 723-733

    Google Scholar

    YANG Jihua, LUO Chongguang, DU Shengjiang, et al. Discussion on the applicability of paleoenvironment index for sedimentary rocks with high clay eontet. Acta Mineralogica Sinica, 2020, 40(6): 723-733.

    Google Scholar

    [18] 张春林,白帅龙,袁建江,等.内蒙古自治区阿拉善左旗库井沟矿区晶质石墨矿勘探报告[R].北京:中国煤炭地质总局勘查研究总院.2017.

    Google Scholar

    ZHANG Chunling,BAI Shuailong,YUAN Jianjiang,et al. Exploration Report on Crystalline Graphite Ore in Kujinggou Mining Area, Alxa Left Banner, Inner Mongolia Autonomous Region[R].Beijing:General Prospecting Institute of China National Administration of Coal Geology.2017.

    Google Scholar

    [19] 张艳飞, 安政臻, 梁帅, 等. 石墨矿床分布特征、成因类型及勘查进展[J]. 中国地质, 2022, 49(1): 135-150

    Google Scholar

    ZHANG Yanfei, An Zhengzhen, LIANG Shuai, et al. Distribution characteristics, genetic types and prospecting progress of graphite deposits. Geology in China [J], 2022, 49(1): 135-150.

    Google Scholar

    [20] 张艳飞, 梁帅, 赵青, 等. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅰ): 成矿地质背景[J]. 化工矿产地质, 2020a, 42(1): 1-11, 18 doi: 10.3969/j.issn.1006-5296.2020.01.001

    CrossRef Google Scholar

    ZHANG Yanfei, LIANG Shuai, ZHAO Qing, et al. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅰ): metallogenic geological background [J]. Geology of Chemical Minerals, 2020a, 42(1): 1-11, 18. doi: 10.3969/j.issn.1006-5296.2020.01.001

    CrossRef Google Scholar

    [21] 张艳飞, 梁帅, 赵青, 等. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅱ): 矿石矿物及矿化特征[J]. 化工矿产地质, 2020b, 42(2): 97-105, 124

    Google Scholar

    ZHANG Yanfei, LIANG Shuai, ZHAO Qing, et al. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅱ): ore minerals and mineralizing charateristics [J]. Geology of Chemical Minerals, 2020b, 42(2): 97-105, 124.

    Google Scholar

    [22] 宁夏回族自治区地质调查院. 中国区域地质志•宁夏志[M]. 北京: 地质出版社, 2018

    Google Scholar

    Ningxia Hui Autonomous Region Institute of Geological Survey. The regional geology of China, Ningxia [M]. Beijing: Geological Publishing House, 2018.

    Google Scholar

    [23] 仲佳鑫, 李欢, 李鹏, 等. 宁夏卫宁北山金场子金矿床地质特征与控矿因素分析[J]. 西北地质, 2012, 45(3): 81-92

    Google Scholar

    ZHONG Jiaxin, LI Huan, LI Peng, et al. Geological Characteristics, Ore-Controlling Factors and Mineralization Law of Gold Ore in the North Mountain of Weining Area, Ningxia[J]. Northwestern Geology, 2012, 45(3): 81-92.

    Google Scholar

    [24] 朱建江, 刘福来, 刘福兴, 等. 胶—辽—吉造山带辽河群石墨矿碳同位素特征及成因分析[J]. 岩石学报, 2021, 37(2): 599-618 doi: 10.18654/1000-0569/2021.02.17

    CrossRef Google Scholar

    ZHU Jianjiang, LIU Fulai, LIU Fuxing, et al. Carbon isotope and genesis study of graphite deposits in the Liaohe group of the Jiao-Liao-Ji orogenic belt [J]. Acta Petrologica Sinica, 2021, 37(2): 599-618. doi: 10.18654/1000-0569/2021.02.17

    CrossRef Google Scholar

    [25] Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1

    CrossRef Google Scholar

    [26] Du Y, Song H, Tong J, et al. Changes in productivity associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems [J]. GSA Bulletin, 2021, 133(1-2), 362-378. doi: 10.1130/B35510.1

    CrossRef Google Scholar

    [27] Hahn-Weinheimer P, Hirner, A. Isotopic evidence for the origin of graphite [J]. Geochemical Journal, 1981, 15(1): 9-15. doi: 10.2343/geochemj.15.9

    CrossRef Google Scholar

    [28] Hoefs J. Stable isotope geochemistry [M]. 6th Edition. Berlin: Springer-Verlag, 2009, 53-107.

    Google Scholar

    [29] Luque F G, Pasteris J D, Wopenka B, et al. Mineral fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation [J]. American Journal of Science, 1998, 298(6): 471-498. doi: 10.2475/ajs.298.6.471

    CrossRef Google Scholar

    [30] Rudnick, R.L., Gao, S. Composition of the continental crust[A]. The crust[M]. Treatise on geochemistry, 2003, 3: 1−64

    Google Scholar

    [31] Schidlowski M. Application of stable carbon isotopes to early biochemical evolution on Earth [J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 47-72. doi: 10.1146/annurev.ea.15.050187.000403

    CrossRef Google Scholar

    [32] Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept [J]. Precambrian Research, 2001, 106, 117-134. doi: 10.1016/S0301-9268(00)00128-5

    CrossRef Google Scholar

    [33] Sharp Z. Principles of stable isotope geochemistry [M]. New Jersey:Pearson Education, 2007,1-344 .

    Google Scholar

    [34] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989, 42(1), 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [35] Taylor S R , Mclennan S M. The continental crust: its composition and evolution [J]. The Journal of Geology, 1985, 94(4), 57-72.

    Google Scholar

    [36] Weis P L, Friedman I, Gleason J P, et al. The origin of epigenetic graphite: Evidence from isotopes [J]. Geochimica et Cosmochimica Acta, 1981, 45(12): 2325-2332. doi: 10.1016/0016-7037(81)90086-7

    CrossRef Google Scholar

    [37] Zhu J J, Zhang L F, Tao R B, et al. The formation of graphite-rich eclogite vein in S. W. Tianshan (China) and its implication for deep carbon cycling in subduction zone [J]. Chemical Geology, 2020, 533: 119430. doi: 10.1016/j.chemgeo.2019.119430

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(5)

Article Metrics

Article views(322) PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint