2024 Vol. 57, No. 5
Article Contents

WANG Xin, WANG Jian, GU Pingyang. 2024. Integrated Precambrian Stratigraphy of the Quanji Massif: A Review. Northwestern Geology, 57(5): 192-208. doi: 10.12401/j.nwg.2024023
Citation: WANG Xin, WANG Jian, GU Pingyang. 2024. Integrated Precambrian Stratigraphy of the Quanji Massif: A Review. Northwestern Geology, 57(5): 192-208. doi: 10.12401/j.nwg.2024023

Integrated Precambrian Stratigraphy of the Quanji Massif: A Review

More Information
  • The Quanji Group and Xiaogaolu Group in the Quanji Massif of the northern Tibetan Plateau recorded a series of important geological events, such as the Neoproterozoic glacial events, Supercontinent cycle and Great Unconformity (GU), thus offering an important window to review the Precambrian geological evolution of this tectonic unit. Recent investigations on the biostratigraphy, chronostratigraphy, and event stratigraphy indicate that: ① The new finding Ediacara-type fossils and associated tubular organisms provide the new sight into our understanding on the origin of modern-looking marine ecosystem, and constraint the upper age limit of Xiaogaolu Group to the late Ediacaran (551~543 Ma). ② The scale of Ediacaran-Cambrian unconformity in the Quanji massif has been suggested to be the approximately 25~50 Ma with missing stratigraphic successions of Terreneuvian Series (Cambrian), which is broadly correspond to the magnitude of GU at the western-southwestern margins of North China Craton. ③There is a significant unconformity between the Hongzaoshan Formation (Quanji Group) and the overlying succession Heituopo Formation (Xiaogaolu Group). Chronostratigraphic investigation revealed that the age of Hongzaoshan Formation (Quanji Group) is the late Paleoproterozoic (16401646 Ma), rather than the Ediacaran period (635~539 Ma) as previously thought. ④ The Quanji massif contains a unique Neoproterozoic glaciation unit, the Hongtiedou diamictite, which is roughly equivalent to the Ediacaran glacial deposits of Zhengmuguan and Luoquan Formation from the western-southwestern margins of North China Craton. ⑤ Both of the Quanji massif and North China Craton have been proposed to be the mid-high latitude region during the late Ediacaran period, rather than the low latitude as previously thought. The common tectonostratigraphic characteristics suggest that the Quanji massif shares the closely tectonic-sedimentary evolution with North China Craton during the Ediacaran-Cambrian transition.

  • 加载中
  • [1] 陈孟莪, 陈祥高, 劳秋元. 陕南震旦系上部地层中的后生动物化石及其地层意义[J]. 地质科学, 1975, 23): 181190.

    Google Scholar

    CHEN Menge, CHEN Xianggao, LAO Qiuyuan. An introduction to the metazoa fossil from the upper Sinian System in southern Shensi and its stratigraphic significance[J]. Sientia Geologica Sinica, 1975, 23): 181190.

    Google Scholar

    [2] 陈世悦, 孙娇鹏, 刘文平, 等. 青海大煤沟新元古代冰碛岩的发现及地质意义[J]. 地层学杂志, 2015, 391): 8188.

    Google Scholar

    CHEN Shiyue, SUN Jiaopeng, LIU Wenping, et al. The discovery of Neoproterozoic tillite in the Damengou region of Qinghai province and its geological significance[J]. Journal of Stratigraphy, 2015, 391): 8188.

    Google Scholar

    [3] 丁莲芳, 张录易, 李勇, 等. 扬子地台北缘晚震旦世—早寒武世早期生物群研究[M]. 北京: 科学技术出版社, 1992: 1–156.

    Google Scholar

    [4] 房瑞森, 梁悦, 华洪, 等. 埃迪卡拉纪晚期疑难化石 Shaanxilithes 在云南会泽朱家箐剖面的首现及其意义[J]. 古生物学报, 2021, 601): 2541.

    Google Scholar

    FANG Ruisen, LIANG Yue, HUA Hong, et al. First report of the problematic Ediacaran fossil Shaanxilithes from the Jiucheng Member of Zhujiaqing Section in Huize, Yunnan province[J]. Acta Palaeontologica Sinica, 2021, 601): 2541.

    Google Scholar

    [5] 高林志, 王自强, 张传恒. 华北块体南缘上元古界氧碳同位素特征及其沉积环境意义[J]. 古地理学报, 2010, 122): 639654.

    Google Scholar

    GAO Linzhi, WANG Ziqiang, ZHANG Chuanheng. Geochemical character of C/O isotope of the Upper Proterozoic from southern margin of North Chin0a Block and implication for its depositional environment[J]. Journal of Palaeogeography, 2010, 122): 639654.

    Google Scholar

    [6] 高林志, 郭宪璞, 丁孝忠, 等. 中国塔里木板块南华纪成冰事件及其地层对比[J]. 地球学报, 2013, 341): 3957. doi: 10.3975/cagsb.2013.01.05

    CrossRef Google Scholar

    GAO Linzhi, GUO Xianpu, DING Xiaozhong, et al. Nanhua glaciation event and its stratigraphic correlation in Tarim Plate, China[J]. Acta Geoscientica Sinica, 2013, 341): 3957. doi: 10.3975/cagsb.2013.01.05

    CrossRef Google Scholar

    [7] 葛肖虹, 刘俊来. 被肢解的“西域克拉通”[J]. 岩石学报, 2000, 161): 5966. doi: 10.3969/j.issn.1000-0569.2000.01.007

    CrossRef Google Scholar

    GE Xiaohong, LIU Junlai. Broken “Western China Craton”[J]. Acta Petrologica Sinica, 2000, 161): 5966. doi: 10.3969/j.issn.1000-0569.2000.01.007

    CrossRef Google Scholar

    [8] 顾其昌. 宁夏回族自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996, 1-132.

    Google Scholar

    [9] 华洪, 陈哲, 张录易. Shaanxilithes在贵州的发现及其意义[J]. 地层学杂志, 2004, 283): 265269. doi: 10.3969/j.issn.0253-4959.2004.03.011

    CrossRef Google Scholar

    HUA Hong, CHEN Zhe, ZHANG Luyi. Shaanxilithes from Taozichong Formation of Guizhou Province and its significance[J]. Journal of Stratigraphy, 2004, 283): 265269. doi: 10.3969/j.issn.0253-4959.2004.03.011

    CrossRef Google Scholar

    [10] 金玉声, 邱盛南. 柴达木盆地北缘全吉山震旦系全吉群底部砾岩成因的讨论[J]. 西北地质, 1983, (3): 5765.

    Google Scholar

    JIN Yusheng, QIU Shengnan. Discussion on the genesis of conglomerates at the bottom of the Sinian Quanji Group in the northern margin of the Qaidam Basin[J]. Northwestern Geology, 1983, (3): 5765.

    Google Scholar

    [11] 旷红伟, 柳永清, 耿元生, 等. 中国中-新元古代地层研究进展及建议划分、对比方案[J]. 地质学报, 2023, 9712): 39614019. doi: 10.19762/j.cnki.dizhixuebao.2023272

    CrossRef Google Scholar

    KUANG Hongwei, LIU Yongqing, GENG Yuansheng, et al. Research advances, a subdivision and correlation of the Meso-Neoproterozoic stratigraphy in China[J]. Acta Geologica Sinica, 2023, 9712): 39614019. doi: 10.19762/j.cnki.dizhixuebao.2023272

    CrossRef Google Scholar

    [12] 李怀坤, 陆松年, 王惠初, 等. 青海柴北缘新元古代超大陆裂解的地质记录——全吉群[J]. 地质调查与研究, 2003, 261): 2737. doi: 10.3969/j.issn.1672-4135.2003.01.006

    CrossRef Google Scholar

    LI Huaikun, LU Songnian, WANG Huichu, et al. Geological records of the Neoproterozoic supercontinent fragmentation in the northern margin of Chai Lake, Qinghai Province: Quanji Group[J]. Geological Survey and Research, 2003, 261): 2737. doi: 10.3969/j.issn.1672-4135.2003.01.006

    CrossRef Google Scholar

    [13] 李日辉, 杨式浦, 李维群. 中国震旦系-寒武系界线过渡层遗迹化石研究[M]. 北京: 地质出版社, 1997, 1−99.

    Google Scholar

    [14] 李猛, 王超, 李荣社, 等. 柴达木盆地北缘全吉群皱节山组碎屑锆石年代学特征及其地质意义[J]. 地球科学, 2018, 4312): 126134.

    Google Scholar

    LI Meng, WANG Chao, LI Rongshe, et al. The Detrital Zircon Geochronology and Geological significance of the Zhoujieshan Formation, Quanji Group in the north margin of Qaidam Basin[J]. Earth Science, 2018, 4312): 126134.

    Google Scholar

    [15] 林世敏, 张运芬, 陶喜森, 等. 陕南震旦系上统高家山组发现的后生动物、遗迹化石和宏观藻类[J]. 陕西地质, 1986, 41): 917.

    Google Scholar

    LIN Shimin, ZHANG Yunfen, TAO Xisen, et al. Body and trace fossils of metazoan and algal macrofossils from the upper Sinian Gaojiashan Formation in southern Shaanxi[J]. Geology of Shaanxi, 1986, 41): 917.

    Google Scholar

    [16] 刘玉娟, 赵元龙, 刘玉莹, 等. 贵州剑河八郎“清虚洞组”Kutorgina Billings, 1861的初步研究[J]. 古生物学报, 2015, 543): 342350.

    Google Scholar

    LIU Yujuan, ZHAO Yuanlong, LIU Yuying, et al. A preliminary study of Kutorgina Billings, 1861 from the Cambrian “Tsinghsutung Formation” of Guizhou, China[J]. Acta palaeontologica Sinica, 2015, 543): 342350.

    Google Scholar

    [17] 柳永清, 旷红伟, 陈骁帅, 等. 中国北方埃迪卡拉纪冰碛岩及冰川作用[J]. 地质学报, 2023, 9712): 39844005.

    Google Scholar

    LIU Yongqing, KUANG Hongwei, CHEN Xiaoshuai, et al. Ediacaran diamictites and glaciation in northern China[J]. Acta Geologica Sinica, 2023, 9712): 39844005.

    Google Scholar

    [18] 陆松年, 于海峰, 赵风清. 青藏高原北部前寒武纪地质初探[M]. 北京: 地质出版社, 2002, 1−130.

    Google Scholar

    [19] 罗惠麟, 蒋志文, 武希彻, 等. 云南东部震旦系—寒武系界线[M]. 昆明: 云南人民出版社, 1982, 1−200.

    Google Scholar

    [20] 马帅, 陈世悦, 孙娇鹏, 等. 柴达木盆地北缘新元古代-前中生代几个重要不整合面地质特征及其构造意义[J]. 大地构造与成矿学, 2018, 436): 2235.

    Google Scholar

    MA Shuai, CHEN Shiyue, SUN Jiaopeng, et al. Geological Characteristics of Unconformities in Neoproterozoic to Pre-Mesozoic Sequences in the North Qaidam Area and their Tectonic Implications[J]. Geotectonica et Metallogenia, 2018, 436): 2235.

    Google Scholar

    [21] 马帅, 周兆华, 陈世悦, 等. 柴北缘全吉地区晚震旦世冰川沉积特征及地质意义[J]. 中国石油大学学报(自然科学版), 2019, 433): 112.

    Google Scholar

    MA Shuai, ZHOU Zhaohua, CHEN Shiyue, et al. Glacial sedimentary characteristics of late Sinian in Quanji area in the northern margin of Qaidam Basin and its geological significance[J]. Journal of China University of Petroleum, 2019, 433): 112.

    Google Scholar

    [22] 潘兵. 华北地台南缘寒武纪早期小壳化石研究[D]. 南京: 中国科学技术大学, 2019, 1−253.

    Google Scholar

    PAN Bing. Early Cambrian Small Shelly Fossils along the southern margin of North China Platform: systematics, biostratigraphy and palaeobiogeography[D]. Nanjing: University of Science and Technology of China, 2019, 1–253.

    Google Scholar

    [23] 全国地层委员会. 中国地层表(2014)说明书[M]. 北京: 地质出版社, 2018.

    Google Scholar

    [24] 全国地层委员会《中国地层表》编委会.中国地层表[R]. 全国地层委员会《中国地层表》编委会, 2014.

    Google Scholar

    [25] 孙崇仁. 青海省岩石地层[M]. 北京: 地质出版社, 1997, 1−338.

    Google Scholar

    [26] 孙娇鹏, 陈世悦, 彭渊, 等. 全吉地区新元古代滨岸冰川沉积特征及地质意义[J]. 地质学报, 2014, 887): 13341340.

    Google Scholar

    SUN Jiaopeng, CHEN Shiyue, PENG Yuan, et al. Sedimentary Characteristic of Neoproterozoic Glaciomarine in the Quanji Area and Its Geological Significance[J]. Acta geologica Sinica, 2014, 887): 13341340.

    Google Scholar

    [27] 孙娇鹏, 陈世悦, 彭渊, 等. 欧龙布鲁克地块新元古代早期冰川事件: 来自CIA指数的证据[J]. 地质论评, 2016, 621): 2936.

    Google Scholar

    SUN Jiaopeng, CHEN Shiyue, PENG Yuan, et al. Early Neoproterozoic Glacier Event in Oulongbuluke Block: Evidence from CIA Index[J]. Geological Review, 2016, 621): 2936.

    Google Scholar

    [28] 万渝生, 许志琴, 杨经绥, 等. 祁连造山带及邻区前寒武纪深变质基底的时代和组成[J]. 地球学报, 2003, 2474): 319324.

    Google Scholar

    WAN Yusheng, XU Zhiqin, YANG Jingsui, et al. The Precambrian High-grade Basement of the Qilian 'Terraneand Neighboring Areas: Its Ages and Compositions[J]. Acta Geoscientica Sinica, 2003, 2474): 319324.

    Google Scholar

    [29] 王超, 李猛, 李荣社, 等. 青海柴达木盆地北缘全吉群内部存在区域性不整合[J]. 地质通报, 2015, 342−3): 364373.

    Google Scholar

    WANG Chao, LI Meng, LI Rongshe, et al. Recognition of the regional unconformity in the Neoproterozoic Quanji Group on the north margin of the Qaidam Basin in Qinghai Province[J]. Geological Bulletin of China, 2015, 342−3): 364373.

    Google Scholar

    [30] 王超, 刘良, 李荣社. 青藏高原北缘前寒武纪地质演化: 进展与讨论[J]. 地质科学, 2018, 533): 128.

    Google Scholar

    WANG Chao, LIU Liang, LI Rongshe. Precambrian geology of the northern margin of the Tibetan Plateau: Review and discussion[J]. Chinese Journal of Geology, 2018, 533): 128.

    Google Scholar

    [31] 王鸿祯. 中国古地理图集[M]. 北京: 地图出版社, 1985, 1−143.

    Google Scholar

    [32] 王勤燕, 陈能松, 李晓彦, 等. 全吉地块基底达肯大坂岩群和热事件的LA-ICPMS锆石U-Pb定年[J]. 科学通报, 2008, 5314): 16931701. doi: 10.1360/csb2008-53-14-1693

    CrossRef Google Scholar

    WANG Qinyan, CHEN Nengsong, LI Xiaoyan, et al. LA-ICPMS U-Pb dating for the basement Dakendaban Group and thermal event in Quanji Block[J]. Chinese Science Bulletin, 2008, 5314): 16931701. doi: 10.1360/csb2008-53-14-1693

    CrossRef Google Scholar

    [33] 王树洗. 青海全吉群的几个叠层石群及其地层意义[J]. 西北地质, 1982, (4): 110.

    Google Scholar

    WANG Shuxi. Stromatolite from Quanji Group in Qinghai Province and its stratigraphic significance[J]. Northwestern Geology, 1982, (4): 110.

    Google Scholar

    [34] 王欣. 晚埃迪卡拉世管状化石陕西迹的形态学、生物地层学及埋藏学研究[D]. 西安: 西北大学, 2019, 1−165.

    Google Scholar

    WANG Xin. Morphology, Biostratigraphy and Taphonomy of the late Ediacaran tubular fossil Shaanxilithes[D]. Xi’an: Northwest University, 2019, 1–165.

    Google Scholar

    [35] 王欣, 高晓峰, 查显锋. 华北克拉通东坡组形成时代及其油气资源潜力[J]. 地球科学, 2023, 4812): 46134627.

    Google Scholar

    WANG Xin, GAO Xiaofeng, ZHA Xianfeng. Age and Potential Petroleum Resources of Dongpo Formation in North China Craton[J]. Earth Science, 2023, 4812): 46134627.

    Google Scholar

    [36] 王云山, 庄庆兴, 史从彦, 等. 柴达木盆地北缘的全吉群[M]. 天津: 天津科学技术出版社, 1980, 214−230.

    Google Scholar

    WANG Yunshan, ZHUANG Qingxing, SHI Congyan, et al. Quanji Group along the northern border of Chaidamu Basin[M]. Tianjin: Tianjin Science and Technology Press, 1980, 214–230.

    Google Scholar

    [37] 王云山, 陈基娘. 青海小高炉群红铁沟冰碛层岩石特征与时限讨论[J]. 前寒武纪地质, 1983, (1): 145162.

    Google Scholar

    WANG Yunshan, CHEN Jiniang. The petrographic characteristics and the age of Hongtiegou tllites from Xiaogaolu Group in Qinghai Province[J]. Precambrian Geology, 1983, (1): 145162.

    Google Scholar

    [38] 王宗起. 中朝板块南缘的滑塌堆积及其构造环境[J]. 西安地质学院学报, 1992, 143): 3139.

    Google Scholar

    WANG Zongqi. Olistostromes and tectonic setting in the southern margin of the Sino-Korean Plate[J]. Journal of Xi’an Institute of Geology, 1992, 143): 3139.

    Google Scholar

    [39] 吴瑞棠, 关宝德. 论罗圈组的冰成特征及重力流改造[J]. 地质学报, 1988, 1: 7889.

    Google Scholar

    WU Ruitang, GUAN Baode. On the glacigenr characteristics of the Luoquan formation and its reworking by gravity flows[J]. Acta Geologica Sinica, 1988, 1: 7889.

    Google Scholar

    [40] 席文祥, 裴放. 河南省岩石地层[M]. 武汉: 中国地质大学出版社, 1997, 1−299.

    Google Scholar

    [41] 邢裕盛, 丁启秀, 罗惠麟, 等. 中国震旦系-寒武系界线专号[J]. 中国地质科学院地质研究所所刊, 1984, 10: 111−125.

    Google Scholar

    XING Yusheng, DING Qixiu, LUO Huilin, et al. The Sinian-Cambrian Boundary of China. Bulletin of the Institute of Geology[J]. Chinese Academy of Geological Sciences, 1984, 1–262.

    Google Scholar

    [42] 原地质部青海地质局632大队.1956年年度总结报告[R]. 原地质部青海地质局632大队, 1956.

    Google Scholar

    [43] 杨式傅, 郑昭昌. 宁夏贺兰山震旦纪正目关组遗迹化石[J]. 地球科学, 1985, 10: 918.

    Google Scholar

    YANG Shifu, ZHENG Zhaochang. The Siniantrace fossils from ZhengmuguanFormation of Helanshan Mountain, Ningxia[J]. Earth Science, 1985, 10: 918.

    Google Scholar

    [44] 张海军, 王训练, 王勋, 等. 柴达木盆地北缘全吉群红藻山组凝灰岩锆石U–Pb年龄及其地质意义[J]. 地学前缘, 2016, 235): 202218.

    Google Scholar

    ZHANG Haijun, WANG Xunlian, WANG Xun, et al. U-Pb zircon ages of tuff beds from the Hongzaoshan Formation of the Quanji Group in the north margin of the Qaidam Basin, NW China, and their geological significances[J]. Earth Science Frontiers, 2016, 235): 202218.

    Google Scholar

    [45] 张录易. 陕西宁强晚震旦世晚期高家山生物群的发现和初步研究[J]. 西安地质矿产研究所所刊, 1986, 13: 6788.

    Google Scholar

    ZHANG Luyi. A discovery and preliminary study of the late stage of late Gaojiashan biota from Sinian in Ningqiang County, Shaanxi[J]. Bulletin of the Xi’an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1986, 13: 6788.

    Google Scholar

    [46] 张抗. 鄂尔多斯盆地边缘沉积盖层底部类冰碛岩的讨论[J]. 中国区域地质, 1991, 1: 7985.

    Google Scholar

    ZHANG Kang. Tilloid at the bottom of the sedimentary covers on the margins of the Ordos Basin[J]. Regional Geology of China, 1991, 1: 7985.

    Google Scholar

    [47] 张文堂, 朱兆玲, 袁克兴, 等. 华北南部、西南部寒武系及上前寒武系的分界[J]. 地层学杂志, 1979, 31): 5156.

    Google Scholar

    ZHANG Wentang, ZHU Zhaoling, YUAN Kexing, et al. Upper Precambrian and Cambrian boundary in southern and southwestern parts of North China[J]. Journal of Stratigraphy, 1979, 31): 5156.

    Google Scholar

    [48] 张志亮, 华洪, 张志飞. 埃迪卡拉纪疑难化石Shaanxilithes在云南王家湾剖面的发现及地层意义[J]. 古生物学报, 2015, 541): 1228.

    Google Scholar

    ZHANG Zhiliang, HUA Hong, ZHANG Zhifei. Problematic Ediacaran fossil Shaanxilithes from the Jiucheng Member of Wangjiawan Section in Jinning, Yunnan Province[J]. Acta Palaeontologica Sinica, 2015, 541): 1228.

    Google Scholar

    [49] 赵祥生. 建所以来西北地区前寒武纪地质研究工作十大进展[J]. 西北地质科学, 1992, 132): 129138.

    Google Scholar

    ZHAO Xiangsheng. Important progress on Precambrian geology research[J]. Northwest Geoscience, 1992, 132): 129138.

    Google Scholar

    [50] 赵银胜. 鄂东南的震旦系及其微古植物[J]. 湖北地质, 1995, 91): 2130.

    Google Scholar

    ZHAO Yinsheng. Sinian of southeastern Hubei and micropalaeophyticum from it[J]. Hubei Geology, 1995, 91): 2130.

    Google Scholar

    [51] 赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报, 2011, 272): 545565.

    Google Scholar

    ZHAO Yanyan, ZHENG Yongfei. Record and time of Neoproterozoic glaciations on Earth[J]. Acta Petrologica Sinica, 2011, 272): 545565.

    Google Scholar

    [52] 周传明, 欧阳晴, 王伟, 等. 中国埃迪卡拉纪岩石地层划分和对比[J]. 地层学杂志, 2021, 453): 211222.

    Google Scholar

    ZHOU Chuanming, OUYANG Qing, WANG Wei, et al. Lithostratigraphic subdivision and correlation of the Ediacaran in China[J]. Journal of Stratigraphy, 2021, 453): 211222.

    Google Scholar

    [53] 周志强, 郑昭昌. 贺兰山地区的寒武系[J]. 西北地质, 1976, 1: 620.

    Google Scholar

    ZHOU Zhiqiang, ZHENG Zhaochang. Cambrian in the Helan Mountains region[J]. Northwestern Geology, 1976, 1: 620.

    Google Scholar

    [54] 朱夏. 关于柴达木盆地的几个主要地质问题[J]. 地质知识, 1957, 6: 15.

    Google Scholar

    ZHU Xia. Some major geological problems in Qaidam Basin[J]. Geology Knowledge, 1957, 6: 15.

    Google Scholar

    [55] Babcock L E, Peng S, Zhu M, et al. Proposed reassessment of the Cambrian GSSP[J]. Journal of African Earth Sciences, 2014, 98: 310. doi: 10.1016/j.jafrearsci.2014.06.023

    CrossRef Google Scholar

    [56] Bengtson S, Yue Z. Predatorial borings in late Precambrian mineralized exoskeletons[J]. Science, 1992, 2575068): 367369. doi: 10.1126/science.257.5068.367

    CrossRef Google Scholar

    [57] Brasier M D, Cowie J, Taylor, M. Decision on the Precambrian-Cambrian boundary[J]. Episodes, 1994, 171): 38.

    Google Scholar

    [58] Brennan S T, Lowenstein T K, Horita J. Seawater chemistry and the advent of biocalcification[J]. Geology, 2004, 326): 473476. doi: 10.1130/G20251.1

    CrossRef Google Scholar

    [59] Buatois L A. Treptichnus pedum and the Ediacaran-Cambrian boundary: Significance and caveats[J]. Geological Magazine, 2017, 1551): 174180.

    Google Scholar

    [60] Canfield D E, Poulton S W, Narbonne G M. Late-Neopro terozoic deep-ocean oxygenation and the rise of animal life.[J]. Science, 2007, 3155808): 9295. doi: 10.1126/science.1135013

    CrossRef Google Scholar

    [61] Chen N, Gong S, Sun M, et al. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: insights from zircon U-Pb and Lu-Hf isotope compositions[J]. Journal of Asian Earth Sciences, 2009, 353-4): 367376. doi: 10.1016/j.jseaes.2008.10.004

    CrossRef Google Scholar

    [62] Chen Z, Zhou C, Xiao S, et al. New Ediacara fossils preserved in marine limestone and their ecological implications[J]. Scientific Reports, 2014, 4: 4180. doi: 10.1038/srep04180

    CrossRef Google Scholar

    [63] Cocks L R M, Torsvik T H. Ordovician palaeogeography and climate change[J]. Gondwana Research, 2020, 100: 5723.

    Google Scholar

    [64] Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446: 8999. doi: 10.1016/j.jpgl.2016.04.016

    CrossRef Google Scholar

    [65] Darroch S A F, Boag T H, Racicot R A. A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 4593): 198208.

    Google Scholar

    [66] Darroch S A F, Smith E F, Nelson L L, et al. Causes and consequences of end-Ediacaran extinction: An update[J]. Cambridge Prisms:Extinction, 2023, 1: 115. doi: 10.1017/ext.2023.2

    CrossRef Google Scholar

    [67] Eyles N, Januszczak N. ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma[J]. Earth Science Reviews, 2004, 651): 173.

    Google Scholar

    [68] Flowers R M, Macdonald F A, Siddoway C S, et al. Diachronousdevelopment of Great Unconformities before Neoproterozoic Snowball Earth[J]. Proceedings of the National Academy of Sciences, 2020, 11719): 1017210180. doi: 10.1073/pnas.1913131117

    CrossRef Google Scholar

    [69] Gehling J G, Jensen S, Droser M L, et al. Burrowing below the basal Cambrian GSSP, fortune head, Newfoundland[J]. Geological Magazine, 2001, 1382): 213218. doi: 10.1017/S001675680100509X

    CrossRef Google Scholar

    [70] Grazhdankin D V, Balthasar U, Nagovitsin K E, et al. Carbonate-hosted Avalon-type fossils in Arctic Siberia[J]. Geology, 2008, 36: 803806.

    Google Scholar

    [71] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic Snowball Earth[J]. Science, 1998, 2815381): 13421346. doi: 10.1126/science.281.5381.1342

    CrossRef Google Scholar

    [72] Karlstrom K, Hagadorn J, Gehrels G, et al. Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons[J]. Nature Geoscience, 2018, 116): 438443. doi: 10.1038/s41561-018-0131-7

    CrossRef Google Scholar

    [73] Keller C B, Husson J M, Mitchel R N, et al. Neoproterozoic glacial origin of the Great Unconformity[J]. PNAS, 2019, 1164): 11361145. doi: 10.1073/pnas.1804350116

    CrossRef Google Scholar

    [74] Li G, Zhang Z, Hua H, et al. Occurrence of the Enigmatic Bivalved Fossil Apistoconcha in the Lower Cambrian of Southeast Shaanxi, North China Platform[J]. Journal of Paleontology, 2014, 882): 359366. doi: 10.1666/13-078

    CrossRef Google Scholar

    [75] Li L, Zhang X, Yun H, et al. New occurrence of Cambroclavus absonus from the lowermost Cambrian of North China and its stratigraphical importance[J]. Alcheringa, 2016, 401): 18. doi: 10.1080/03115518.2015.1069460

    CrossRef Google Scholar

    [76] Lu S, Ma G, Gao Z, et al. Sinianice ages and glacial sedimentary facies-areas in China[J]. Precambrian Research, 1985, 291): 5363.

    Google Scholar

    [77] Malakhovskaya Y E. Morphogenesis and evolution of Kutorgina billings, 1861 (Brachiopoda, Kutorginida)[J]. Paleontological Journal, 2013, 471): 1122. doi: 10.1134/S0031030113010073

    CrossRef Google Scholar

    [78] Maruyama S, Santosh M, Zhao D. Superplume, Supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 111-2): 737. doi: 10.1016/j.gr.2006.06.003

    CrossRef Google Scholar

    [79] Meyer M, Schiffbauer J D, Xiao S, et al. Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes[J]. Palaios, 2012, 27: 354372. doi: 10.2110/palo.2011.p11-098r

    CrossRef Google Scholar

    [80] Narbonne G M. The Ediacaran biota: Neoproterozoic Origin of Animals and Their Ecosystems[J]. Review of Earth and Planetary Sciences, 2005, 33: 421442. doi: 10.1146/annurev.earth.33.092203.122519

    CrossRef Google Scholar

    [81] Pang K, Wu C, Sun Y, et al. New Ediacara-Type Fossils and Late Ediacaran Stratigraphy from the Northern Qaidam Basin (China): Paleogeographic Implications[J]. Geology, 2021, 49(10): 1160–1164.

    Google Scholar

    [82] Peters S E, Gaines R R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion[J]. Nature, 2012, 4847394): 363366. doi: 10.1038/nature10969

    CrossRef Google Scholar

    [83] Rogov V, Marusin V, Bykova N, et al. The oldest evidence of bioturbation on Earth[J]. Geology, 2012, 405): 395398. doi: 10.1130/G32807.1

    CrossRef Google Scholar

    [84] Shen B, Xiao S, Dong L, et al. Problematic macrofossils from Ediacaran successions in the North China and Chaidam Block: implications for their evolutionary roots and biostratigraphic significance[J]. Journal of Paleontology, 2007, 816): 13961411. doi: 10.1666/06-016R.1

    CrossRef Google Scholar

    [85] Shen B, Xiao S, Zhou C, et al. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event[J]. Precambrian Research, 2010, 1773-4): 241252. doi: 10.1016/j.precamres.2009.12.006

    CrossRef Google Scholar

    [86] Sun J, Dong Y, Ma L, et al. Late Paleoproterozoictectonic evolution of the Olongbuluke terrane, northern Qaidam, China: Constraints from stratigraphy and detrital zircon geochronology[J]. Precambrian Research, 2019, 331: 105349.

    Google Scholar

    [87] Squire R A, Campbell I H, Allen C M, et al. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?[J]. Earth and Planetary Science Letters, 2006, 2501-2): 116133. doi: 10.1016/j.jpgl.2006.07.032

    CrossRef Google Scholar

    [88] Tarhan L, Hughes N, Myrow P, et al. Precambrian–Cambrian boundary interval occurrence and form of the enigmatic tubular body fossil Shaanxilithes ningqiangensis from the Lesser Himalaya of India[J]. Palaeontology, 2014, 572): 283298. doi: 10.1111/pala.12066

    CrossRef Google Scholar

    [89] Vorob’eva N G, Sergeev V N, Knoll A H. Neoproterozoic microfossils from the northeastern margin of the East European Platform[J]. Journal of Paleontology, 2009, 832): 161196. doi: 10.1666/08-064.1

    CrossRef Google Scholar

    [90] Wan B, Tang Q, Pang K, et al. Repositioning the Great Unconformity at the southeastern margin of the North China Craton[J]. Precambrian Research, 2019, 324: 117. doi: 10.1016/j.precamres.2019.01.014

    CrossRef Google Scholar

    [91] Wang C, Evans D A D, Li M, et al. Proterozoic-Mesozoic development of the Quanji block from northern Tibet and the cratonic assembly of eastern Asia[J]. American Journal of Science, 2022, 3225): 705727. doi: 10.2475/05.2022.03

    CrossRef Google Scholar

    [92] Wang R, Shen B, Lang X, et al. A Great late Ediacaran ice age[J]. National Science Review, 2023, 108): nwad117.

    Google Scholar

    [93] Wang X, Zhang X, Liu W. Biostratigraphic constraints on the age of Neoproterozoic glaciation in North China[J]. Journal of Asian Earth Sciences, 2021a, 219: 110.

    Google Scholar

    [94] Wang X, Zhang X, Zhang Y, et al. New materials reveal Shaanxilithes as a Cloudina-like organism of the late Ediacaran[J]. Precambrian Research, 2021b, 362: 114.

    Google Scholar

    [95] Wang Y, Wang X, Wang Y. Cambrian Ichnofossils from the Zhoujieshan Formation (Quanji Group) Overlying Tillites in the Northern Margin of the Qaidam Basin, NW China[J]. Journal of Earth Science, 2015, 262): 203210. doi: 10.1007/s12583-015-0532-0

    CrossRef Google Scholar

    [96] Weber B, Steiner M, Zhu M. Precambrian-Cambrian trace fossils from theYangtze Platform (South China) and the early evolution of bilaterian lifestyles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 2542): 328249.

    Google Scholar

    [97] Wood R A, Zhuravlev A Y, Sukhov S S, et al. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform[J]. Geology, 2017, 451): 2730. doi: 10.1130/G38367.1

    CrossRef Google Scholar

    [98] Xiao S, Bao H, Wang H, et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciations[J]. Precambrian Research, 2004, 130: 126. doi: 10.1016/j.precamres.2003.10.013

    CrossRef Google Scholar

    [99] Xu B, Xiao S, Zou H, et al. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China[J]. Precambrian Research, 2009, 168: 247258. doi: 10.1016/j.precamres.2008.10.008

    CrossRef Google Scholar

    [100] Xu B, Zou H, Chen Y, et al. The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J]. Precambrian Research, 2013, 236: 214226. doi: 10.1016/j.precamres.2013.07.009

    CrossRef Google Scholar

    [101] Yang B, Steiner M, Schiffbauer J D, et al. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids[J]. Scientific Reports, 2020, 10. 535.

    Google Scholar

    [102] Yang J, Zeng Z, Cai X, et al. Carbon and oxygen isotopes analyses for the Sinian carbonates in the Helan Mountain, North China[J]. Chinese Scinece Bulletin, 2013, 5832): 39433955. doi: 10.1007/s11434-013-5857-4

    CrossRef Google Scholar

    [103] Yang C, Rooney A D, Condon D J, et al. The tempo of Ediacaran evolution[J]. Science Advances, 2021, 219: 110.

    Google Scholar

    [104] Young G M. Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents?[J]. Geology, 1995, 232): 153156. doi: 10.1130/0091-7613(1995)023<0153:ANGDPO>2.3.CO;2

    CrossRef Google Scholar

    [105] Zhang N, Zhong S, Flowers R M. Predicting and testing continental vertical motion histories since the Paleozoic[J]. Earth and Planetary Science Letters, 2012, 317–318: 426–435.

    Google Scholar

    [106] Zhang X, Shu D. Causes and consequences of the Cambrian explosion[J]. Science China: Earth Sciences, 2014, 575): 930942. doi: 10.1007/s11430-013-4751-x

    CrossRef Google Scholar

    [107] Zhao G, Wang Y, Huang B, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262286. doi: 10.1016/j.earscirev.2018.10.003

    CrossRef Google Scholar

    [108] Zhou C, Tucker R, Xiao S, et al. New constraints on the ages of Neoproterozoic glaciations in south China[J]. Geology, 2004, 325): 437440.

    Google Scholar

    [109] Zhou C, Yuan X, Xiao S, et al. Ediacaran integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 621): 724. doi: 10.1007/s11430-017-9216-2

    CrossRef Google Scholar

    [110] Zhu M, Zhuravlev A Y, Wood R A, et al. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform[J]. Geology, 2017, 455): 459462. doi: 10.1130/G38865.1

    CrossRef Google Scholar

    [111] Zhu M, Yang A, Yuan J, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 621): 2560. doi: 10.1007/s11430-017-9291-0

    CrossRef Google Scholar

    [112] Zhuravlev A Y, Vintaned J A G, Ivantsov A Y. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin[J]. Geological Magazine, 2009, 1462): 775780.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(893) PDF downloads(189) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint