| Citation: | PENG Ling, YIN Zhiqiang, JIN Aifang, YANG Guicai, LI Zhanhui. 2023. Status and enlightenment of natural resources monitoring and observation network construction in China and aboard. Geological Bulletin of China, 42(12): 2156-2164. doi: 10.12097/j.issn.1671-2552.2023.12.011 | 
Natural resources are the material basis of human survival, social development and economic construction.Monitoring and observing the various spheres of the earth system and its components such as mountains, rivers, forests, fields, lakes, grass, sand and ice are of great scientific and practical significance for natural resource management decision-making and earth system scientific research.This paper summarizos the construction ideas, site deployment, monitoring and observation content indicators, technical methods and new equipment of natural resource related networks in the United States, England, Germany, France, Australia and other countries, and summarizes international experience and enlightenment, that is, pay attention to comprehensive monitoring and observation under the framework of earth system science, improve standardized long-term continuous monitoring and observation capabilities, and strengthen based on space-sky-ground collaborative monitoring and observation.This paper analyzes the development status and existing deficiencies of China's natural resource related monitoring network, and puts forward the preliminary idea of building a national natural resources monitoring network, in order to provide reference for the development of China's natural resource monitoring and observations.
 
		                | [1] | Bogena H R. TERENO: German Network of Terrestrial Environmental Observatories[J]. Journal of Large-Scale Research Facilities, 2016, 2: 52-59. doi: 10.17815/jlsrf-2-98 | 
| [2] | Chaffaut Q, Hinderer J, Masson F, et al. New insights on water storage dynamics in a mountainous catchment from superconducting gravimetry[J]. Geophysical Journal International, 2021, 228(1): 432-446. doi: 10.1093/gji/ggab328 | 
| [3] | Chatton E, Labasque T, de La Bernardie J, et al. Field continuous measurement of dissolved gases with a CF-MIMS: applications to the physics and biogeochemistry of groundwater flow[J]. Environmental Science & Technology, 2017, 51(2): 846-854. | 
| [4] | Eberts S M, Wagner C R, Woodside M D. Water priorities for the nation—The U.S. Geological Survey next generation water observing system[R]. Reston, VA, 2019. | 
| [5] | Gaillardet J, Braud I, Hankard F, et al. OZCAR: the French network of critical zone observatories[J]. Vadose Zone Journal, 2018, 17(1): 1-24. | 
| [6] | Guo L, Lin H. Critical zone research and observatories: current status and future perspectives[J]. Vadose Zone Journal, 2016, 15(9): 1-14. | 
| [7] | James C, Derek E, Will E, et al. TERN, Australia's land observatory: addressing the global challenge of forecasting ecosystem responses to climate variability andchange[J]. Environmental Research Letters, 2019, 14(9): 095004. doi: 10.1088/1748-9326/ab33cb | 
| [8] | NEON. 2011 Science strategy: enabling continental-scale ecological forecasting[EB/OL]. [2023-12-08]. | 
| [9] | Read T, Bour O, Selker J S, et al. Active-distributed temperature sensing to continuously quantify vertical flow in boreholes[J]. Water Resources Research, 2014, 50(5): 3706-3719. doi: 10.1002/2014WR015273 | 
| [10] | Sier A, Monteith D. The UK Environmental Change Network after twenty years of integrated ecosystem assessment: Key findings and future perspectives[J]. Ecological Indicators, 2016, 68: 1-12. doi: 10.1016/j.ecolind.2016.02.008 | 
| [11] | Sparrow B D, Edwards W, Munroe S E M, et al. Effective ecosystem monitoring requires a multi-scaled approach[J]. Biological Reviews, 2020, 95(6): 1706-1719. doi: 10.1111/brv.12636 | 
| [12] | Stefano N, Paolo M, Mattia S, et al. Big data challenges in building the global earth observation system of systems[J]. Environmental Modelling & Software, 2015, 68: 1-26. | 
| [13] | Zweifel R, Etzold S, Basler D, et al. Tree Net-The biological drought and growth indicator network[J]. Frontiers in Forests and Global Change, 2021, 4: 776905. doi: 10.3389/ffgc.2021.776905 | 
| [14] | 陈军, 武昊, 张继贤, 等. 自然资源调查监测技术体系构建的方向与任务[J]. 地理学报, 2022, 77(5): 1041-1055. | 
| [15] | 范宏喜. 开启地下水监测新纪元——聚焦国家地下水监测工程建设[J]. 水文地质工程地质, 2015, 42(2): 161-162. | 
| [16] | 冯晓娟, 米湘成, 肖治术, 等. 中国生物多样性监测与研究网络建设及进展[J]. 中国科学院院刊, 2019, 34(12): 1389-1398. | 
| [17] | 冯筠, 高峰, 黄新宇. 构建天地一体化的全球对地观测系统: 三次国际地球观测峰会与GEOSS[J]. 地球科学进展, 2005, 20(12): 1327-1333. | 
| [18] | 付宇佳, 潭昌海, 刘晓煌, 等. 自然资源定义、分类、观测监测及其在国土规划治理中的应用[J]. 中国地质, 2022, 49(4): 1048-1063. | 
| [19] | 傅伯杰, 刘宇. 国际生态系统观测研究计划及启示[J]. 地理科学进展, 2014, 33(7): 893-902. | 
| [20] | 傅伯杰, 牛栋, 于贵瑞. 生态系统观测研究网络在地球系统科学中的作用[J]. 地理科学进展, 2007, 26(1): 1-16. | 
| [21] | 高春东, 何洪林. 野外科学观测研究站发展潜力大应予高度重视[J]. 中国科学院院刊, 2019, 34(3): 344-348. | 
| [22] | 何惠. 中国水文站网[J]. 水科学进展, 2010, 21(4): 460-465. | 
| [23] | 廖小罕, 封志明, 高星, 等. 野外科学观测研究台站(网络)和科学数据中心建设发展[J]. 地理学报, 2020, 75(12): 2669-2683. | 
| [24] | 刘海江, 孙聪, 齐杨, 等. 国内外生态环境观测研究台站网络发展概况[J]. 中国环境监测, 2014, 30(5): 125-131. doi: 10.3969/j.issn.1002-6002.2014.05.028 | 
| [25] | 刘晓煌, 刘晓洁, 程书波, 等. 中国自然资源要素综合观测网络构建与关键技术[J]. 资源科学, 2020, 42(10): 1849-1859. | 
| [26] | 卢琦, 李永华, 崔向慧, 等. 中国荒漠生态系统定位研究网络的建设与发展[J]. 中国科学院院刊, 2020, 35(6): 779-792. | 
| [27] | 马克平. 中国生物多样性监测网络建设: 从CForBio到Sino BON[J]. 生物多样性, 2015, 23 (1): 1-2. | 
| [28] | 裴小龙, 高天胜, 祝晓松, 等. 基于空天地一体化的黑河流域自然资源要素综合观测网络构建[J]. 干旱区地理, 2022, 45(5): 1450-1459. | 
| [29] | 钱建利, 倪舒博, 徐多勋, 等. 浅析构建自然资源要素综合观测网络重要意义[J]. 中国国土资源经济, 2021, 8: 28-36. | 
| [30] | 沈运华, 张秀荣, 刘晓煌, 等. 陆表自然资源综合观测体系构建的思考[J]. 中国国土资源经济, 2023, 36(2): 72-80. | 
| [31] | 王兵, 崔向慧, 杨锋伟. 中国森林生态系统定位研究网络的建设与发展[J]. 生态学杂志, 2004, 23(4): 84-91. doi: 10.3321/j.issn:1000-4890.2004.04.019 | 
| [32] | 王梁, 刘晓煌, 刘玖芬, 等. 全国自然资源要素综合观测标准体系构建[J]. 中国标准化, 2021, 12: 11-20. | 
| [33] | 王左, 何惠, 魏新平. 我国水文站网建设与发展[J]. 水文, 2006, 26(3): 42-44. | 
| [34] | 吴季友, 陈传忠, 蒋睿晓, 等. 我国生态环境监测网络建设成效与展望[J]. 中国环境监测, 2021, 37(2): 1-7. | 
| [35] | 严宇红, 周政辉. 国家地下水监测工程站网布设成果综述[J]. 水文, 2017, 37(5): 74-78. | 
| [36] | 杨萍, 白永飞, 宋长春, 等. 野外站科研样地建设的思考、探索与展望[J]. 中国科学院院刊, 2020, 35(1): 125-134. | 
| [37] | 杨萍. 中国科学院野外科学观测研究网络未来发展的思考[J]. 中国科学院院刊, 2021, 36(1): 104-112. | 
| [38] | 杨帅, 周国民, 庄严. 国际农业科学观测工作网络化发展的经验与启示[J]. 农业大数据学报, 2020, 2(4): 5-13. | 
| [39] | 殷志强, 卫晓锋, 刘文波, 等. 承德自然资源综合地质调查工程进展与主要成果[J]. 中国地质调查, 2020, 7(3): 1-12. | 
| [40] | 于贵瑞, 张雷明, 张扬建, 等. 大尺度陆地生态系统状态变化及其资源环境效应的立体化协同联网观测[J]. 应用生态学报, 2021, 32(6): 1903-1918. | 
