2023 Vol. 42, No. 12
Article Contents

LIU Huan, LI Huaikun, ZHANG Jian, TIAN Hui, CHANG Qingsong. 2023. Geochemical characteristics of clastic rocks from Ruyang Group, western He'nan Province, and its indication to depositional environment and tectonic setting. Geological Bulletin of China, 42(12): 2142-2155. doi: 10.12097/j.issn.1671-2552.2023.12.010
Citation: LIU Huan, LI Huaikun, ZHANG Jian, TIAN Hui, CHANG Qingsong. 2023. Geochemical characteristics of clastic rocks from Ruyang Group, western He'nan Province, and its indication to depositional environment and tectonic setting. Geological Bulletin of China, 42(12): 2142-2155. doi: 10.12097/j.issn.1671-2552.2023.12.010

Geochemical characteristics of clastic rocks from Ruyang Group, western He'nan Province, and its indication to depositional environment and tectonic setting

  • The Mesoproterzoic Ruyang Group along the south margin of North China Craton(NCC) have been attracted much attention, resulting in an increasing number of achievements about chronology and sedimentology.In this paper, we trace the provenance of the clastic sedimentary rock of the Ruyang Group by geochemistry perspective, and reconstruct the palaeogeography and tectonic setting, which provide valuable details to describe the structure of the Meso-Neoproterozoic strata in the southern margin of NCC.The analytical results of major and trace elements contents of the Yunmengshan and Baicaoping Formations suggest that: ①Compared with Baicaoping Formation, Yunmengshan Formation shows higher SiO2 contents, lower Fe2O3, MgO, CaO and K2O contents, the obvious depletion of transition trace elements and high field strength elements, indicating relatively higher maturity.All samples show steep descending REE patterns with enriched LREE, flat HREE and obvious fractionation of LREE and HREE, moderately negative Eu anomalies(δEu=0.60~0.85) and weakly negative Ce abnormity(δCe=0.80~0.96), which are similar with those of upper continental crust.②According to trace element content and ratios (V/Cr, Ni/Co, U/Th Sr/Ba, Th/U Sr/Cu, Rb/Sr ratios and Ce, Eu anomaly) of the Yunmengshan and Baicaoping Formations, it is inferred that they are littoral and neritic deposit, and oxidation sedimentary environment, while the palaeoclimate experienced aridity-washy-aridity change.③The tectonic setting discrimination diagrams and the abundance of rare earth elements imply that the clastic rocks of the Yunmengshan and Baicaoping formations developed on passive continental margin.The island arc attribute of some points was inherited from the provenance protolith and influenced by the structure setting when the protolith was deposited.Combined with sedimentary and chronostratigraphic results, this series of passive continental margin littoral and neritic clastic deposits can serve as a record of North China Craton breakup from 1.8 to 1.6 Ga and a geological response to the initial breakup of the Columbia supercontinent.

  • 加载中
  • [1] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627. doi: 10.1086/628815

    CrossRef Google Scholar

    [2] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provennance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.

    Google Scholar

    [3] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and sedimentary basins[J]. Contributions to Mineralogy and Pretrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292

    CrossRef Google Scholar

    [4] Canfield D E. A new model for Proterozoie ocean chemistry[J]. Nature, 1998, 396: 450-453. doi: 10.1038/24839

    CrossRef Google Scholar

    [5] Canfield D E. The evolution of the Earth surface sulphur reservoir[J]. American Journal of Science, 2004, 304: 839-861. doi: 10.2475/ajs.304.10.839

    CrossRef Google Scholar

    [6] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement compostition on evolution of mudrock chemistry in the southwestern United Sates[J]. Geochemica et Cosmochimica, 1995, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [7] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104: 77-93. doi: 10.1016/S0301-9268(00)00090-5

    CrossRef Google Scholar

    [8] Girty G H, Hanson A D, Yoshinobu A S, et al. Provenance of Paleozoic mudstone in a contact metamorphic Aureole determined by rare earth element, Th and Sc analyses, Sierra Nevada, Californian[J]. Geology, 1993, 2(14): 363-366.

    Google Scholar

    [9] Henderson P. Rare earth element geochemistry[M]. Amsterdam: Elsevier Science Publishers, 1984: 1-510.

    Google Scholar

    [10] Hu G H, Zhao T P, Zhou Y Y. Depositional age, provenance and tectonic setting of the Mesoproterozoic Ruyang Group, southern margin of the North China Craton[J]. Precambrian Research, 2014, 246: 296-318. doi: 10.1016/j.precamres.2014.03.013

    CrossRef Google Scholar

    [11] John A S Adams, Charles E. Weaver. Thorium-to-uranium ratios as indicators of concept of geochemical facies [J]. AAPG Bulletin, 1958, 42(2): 387-430.

    Google Scholar

    [12] Jones B, M anning D A C. Comparison of geochemical in dices used for the interpretation of palaeored oxconditions in ancient mudstones [J]. Chemical Geology, 1994, 111: 11 1-129. doi: 10.1016/0009-2541(94)90085-X

    CrossRef Google Scholar

    [13] Kump L R. The rise of atmospheric oxygen[J]. Nature, 2008, 451: 277-278. doi: 10.1038/nature06587

    CrossRef Google Scholar

    [14] Kump L R, Junium C, Arthur M A, et al., Isotopic evidence for massive oxidation of organic matter following the great oxidation event[J]. Science, 2011, 334: 1694-1696. doi: 10.1126/science.1213999

    CrossRef Google Scholar

    [15] Lu S N, Zhao G C, Wang H C, et al. Precambrian metamorphic basement and sedimentary cover of the North China Craton[J]. Precambrian Research, 2008, 160: 77-93. doi: 10.1016/j.precamres.2007.04.017

    CrossRef Google Scholar

    [16] Pattan J N, Pearce N J G, Mislankar P G. Constraints in using cerium-anomaly of bulk sediments as an indicator of paleobottom water redox environment: A case study from the Central Indian Ocean Basin[J]. Chemical Geology, 2005, 221(3): 260-278.

    Google Scholar

    [17] Peng P, Zhai M G, Ernst R E, et al. A 1.78 Ga large igneous province in the North China craton: The Xiong'er volcanic province and the North China dyke swarm[J]. Lithos, 2008, 101: 260-280. doi: 10.1016/j.lithos.2007.07.006

    CrossRef Google Scholar

    [18] Potter P E. Petrology and chemistry of Modern Big River sands[J]. The Journal of Geology, 1978, 86(4): 423-449. doi: 10.1086/649711

    CrossRef Google Scholar

    [19] Rimmer S M, Thompson J A, Goodnight S A, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: geochemical and petrographic evidence [J]. Palaeogeographv, Palaeoclimatology, Palaeoecology, 2004, 215(1/2): 125-154.

    Google Scholar

    [20] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650. doi: 10.1086/629071

    CrossRef Google Scholar

    [21] Roser B P, Korsch R J. Provenance signatures of sandstone-mudston suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.

    Google Scholar

    [22] Su W B, Zhang S H, Huff W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implication for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(6): 543-553.

    Google Scholar

    [23] Tayloy S R, Mclennan S M. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks[J]. Phil. Trans. R. Soc. London, 1981, A301: 381-399.

    Google Scholar

    [24] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 1-312.

    Google Scholar

    [25] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoprodu-ctivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-3.

    Google Scholar

    [26] Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: an overview[C]//Tyson R V, Pearson T H. Modern and ancient continental shelf Anoxia. Geol. Soc. London, 1991, 58: 1-14.

    Google Scholar

    [27] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7

    CrossRef Google Scholar

    [28] Zhao G C, Sun M, Wilde S A. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia surpercontinent: records in the North China Craton revisited[J]. International Geology Review, 2011, 53: 1331-1356. doi: 10.1080/00206814.2010.527631

    CrossRef Google Scholar

    [29] 柏道远, 周亮, 王先辉, 等. 湘东南南华系-寒武系砂岩地球化学特征及对华南新元古代-早古生代构造背景的制约[J]. 地质学报, 2007, 81(6): 755-771. doi: 10.3321/j.issn:0001-5717.2007.06.004

    CrossRef Google Scholar

    [30] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质评论, 2009, 55(1): 1-99.

    Google Scholar

    [31] 陈晋镳, 张鹏远, 高振家, 等. 中国地层典——中元古界[M]. 北京: 地质出版社, 1999: 1-89.

    Google Scholar

    [32] 陈衍景, 邓健. 华北克拉通南缘早前寒武纪沉积物稀土地球化学特征及演化[J]. 地球化学, 1993, 1: 93-104.

    Google Scholar

    [33] 翟明国, 胡波, 彭澎, 等. 华北中-新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 2014, 21(1): 100-119.

    Google Scholar

    [34] 范玉海, 屈红军, 王辉, 等. 微量元素分析在判别沉积介质环境中的应用: 以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质, 2012, 39(2): 382-389. doi: 10.3969/j.issn.1000-3657.2012.02.010

    CrossRef Google Scholar

    [35] 高林志, 张传恒, 史晓颖, 等. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2007, 26(3): 249-255. doi: 10.3969/j.issn.1671-2552.2007.03.001

    CrossRef Google Scholar

    [36] 高林志, 张传恒, 史晓颖, 等. 华北古陆下马岭组归属中元古界的SHRIMP锆石新证据[J]. 科学通报, 2008, 53(11): 2617-2623.

    Google Scholar

    [37] 高林志, 张传恒, 刘鹏, 等. 华北-江南地区中、新元古代地层格架的再认识[J]. 地球学报, 2009, 30(4): 433-446.

    Google Scholar

    [38] 耿元生, 旷红伟, 杜利林, 等. 从哥伦比亚超大陆裂解事件轮古/中元古代的界限[J]. 岩石学报, 2019, 35(8): 2299-2323.

    Google Scholar

    [39] 关保德, 潘泽成, 耿午辰, 等. 东秦岭北坡震旦亚界[C]//天津地质矿产研究所编. 中国震旦亚界. 天津: 天津科学技术出版社, 1980: 288-313.

    Google Scholar

    [40] 关保德, 耿午辰, 戎治权, 等. 河南东秦岭北坡中-上元古界[M]. 郑州: 河南科技出版社, 1988: 1-241.

    Google Scholar

    [41] 河南省地质矿产局. 河南省区域地质志[M]. 北京: 地质出版社, 1989: 1-772.

    Google Scholar

    [42] 胡国辉, 赵太平, 周艳艳, 等. 华北克拉通南缘中-新元古代沉积地层对比研究及其地质意义[J]. 岩石学报, 2013, 29(7): 2491-2507.

    Google Scholar

    [43] 莱尔曼. 湖泊的化学地质学和物理学[M]. 王苏民译. 北京: 地质出版社, 1989.

    Google Scholar

    [44] 雷开宇, 刘池洋, 张龙, 等. 鄂尔多斯盆地北部侏罗系泥岩地球化学特征: 物源与古沉积环境恢复[J]. 沉积学报, 2017, 35(3): 621-636.

    Google Scholar

    [45] 雷振宇, 周洪瑞, 王自强. 豫西中元古代汝阳群层序地层初步研究[J]. 地球科学——中国地质大学学报, 1996, 21(3): 272-276.

    Google Scholar

    [46] 李承东, 赵利刚, 常青松, 等. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论[J]. 中国地质, 2017, 44(3): 511-525.

    Google Scholar

    [47] 李怀坤, 李惠民, 陆松年. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义[J]. 地球化学, 1995, 24(1): 43-47. doi: 10.3321/j.issn:0379-1726.1995.01.004

    CrossRef Google Scholar

    [48] 李怀坤, 陆松年, 李惠民, 等. 侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年——对华北中元古界地层划分方案的制约[J]. 地质通报, 2009, 28(10): 1396-1404.

    Google Scholar

    [49] 李怀坤, 朱士兴, 相振群, 等. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131-2140.

    Google Scholar

    [50] 李怀坤, 苏文博, 周红英, 等. 中-新元古界标准剖面蓟县系首获高精度年龄制约蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究[J]. 岩石学报, 2014, 30(10): 2999-3012.

    Google Scholar

    [51] 李怀坤, 张健, 田辉, 等. 华北克拉通北缘燕辽裂陷槽中-新元古代地层年代学研究进展[J]. 地质调查与研究, 2020, 43(2): 127-136. doi: 10.3969/j.issn.1672-4135.2020.02.007

    CrossRef Google Scholar

    [52] 李钦仲, 杨应章, 贾金昌, 等. 华北地台南缘(陕西部分) 晚前寒武纪地层研究[M]. 西安: 西安交通大学出版社, 1985: 1-174.

    Google Scholar

    [53] 林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1): 72-80.

    Google Scholar

    [54] 刘本立. 地球化学基础[M]. 北京: 北京大学出版社, 1994: 186-187.

    Google Scholar

    [55] 刘欢, 李怀坤, 田辉, 等. 豫西汝阳群、洛峪群碎屑锆石年代学特征及其地质意义[J]. 地质学报, 2021, 95(8): 2436-2452.

    Google Scholar

    [56] 陆松年, 李惠民. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年[J]. 中国地质科学院院报, 1991, 22(1): 137-145.

    Google Scholar

    [57] 陆松年, 杨春亮, 李怀坤, 等. 华北古大陆与哥伦比亚超大陆[J]. 地学前缘, 2002, 9(4): 225-233.

    Google Scholar

    [58] 吕奇奇, 罗顺社, 官玉龙, 等. 华北克拉通南缘中-新元古界沉积充填特征及演化[J]. 沉积学报, 2020, 38(6): 1123-1140.

    Google Scholar

    [59] 毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4): 337-348

    Google Scholar

    [60] 梅冥相. 地球历史中的巨型氧化作用事件: 了解古地理背景演变的重要线索[J]. 古地理学报, 2016, 18(3): 315-334.

    Google Scholar

    [61] 庞岚尹, 祝禧艳, 胡国辉, 等. 华北克拉通南缘中-新元古代年代地层格架和沉积演化过程研究的新进展[J]. 地层学杂志, 2021, 45(2): 180-195.

    Google Scholar

    [62] 全国地层委员会编著. 中国地层指南及中国地层指南说明书[M]. 北京: 地质出版社, 2014: 1-62.

    Google Scholar

    [63] 山西省地质矿产局. 山西省区域地质志[R]. 北京: 地质矿产局, 1989: 1-780.

    Google Scholar

    [64] 陕西省地质矿产局. 陕西省区域地质志[M]. 北京: 地质出版社, 1989: 1-698.

    Google Scholar

    [65] 苏文博, 李怀坤, Huff W D, 等. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义[J]. 科学通报, 2010, 55(22): 2197-2206.

    Google Scholar

    [66] 苏文博, 李怀坤, 徐莉, 等. 华北克拉通南缘洛峪群-汝阳群属于中元古界长城系-河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束[J]. 地质调查与研究, 2012, 35(2): 96-108.

    Google Scholar

    [67] 苏文博. 2012年全球前寒武纪新年表与中国中元古代年代地层学研究[J]. 地学前缘, 2014, 21(2): 119-138.

    Google Scholar

    [68] 苏文博. 华北及扬子克拉通中元古代年代地层格架厘定及相关问题讨论[J]. 地学前缘, 2016, 23(6): 156-185.

    Google Scholar

    [69] 唐鹏海. 地球化学参数在沉积古盐度中的应用[J]. 云南化工, 2019, 46(9): 124-130.

    Google Scholar

    [70] 田辉, 张健, 李怀坤, 等. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义[J]. 地球学报, 2015, 36(5): 647-658.

    Google Scholar

    [71] 汪校锋. 华北南缘中-新元古代地层年代学研究及其地质意义[D], 武汉: 中国地质大学, 2015: 1-120.

    Google Scholar

    [72] 汪正江, 陈洪德, 张锦泉. 物源分析的研究与展望[J]. 沉积与特提斯地质, 2000, 20(4): 104-110.

    Google Scholar

    [73] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1274.

    Google Scholar

    [74] 王淼, 周洪瑞, 张恒. 华北南缘中元古代地层归属及大地构造演化: 来自碎屑锆石U-Pb年代学和锆石微量元素的证据[J]. 地质学报, 2020, 94(4): 1027-1045.

    Google Scholar

    [75] 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报, 1979, 2: 51-60.

    Google Scholar

    [76] 王中刚, 于学元, 赵振华, 等. 稀土元素地球化学[M], 北京: 科学出版社, 1989: 1-535.

    Google Scholar

    [77] 席文祥, 裴放. 河南省岩石地层——全国地层多重划分对比研究(14) [M]. 武汉: 中国地质大学出版社, 1997: 1-299.

    Google Scholar

    [78] 相振群, 陆松年, 李怀坤, 等. 华北克拉通中元古代岩浆事件群[J]. 地质调查与研究, 2020, 43(2): 137-152.

    Google Scholar

    [79] 邢裕盛. 中国的上前寒武系——中国地层(3) [M]. 北京: 地质出版社, 1989: 1-313.

    Google Scholar

    [80] 邢裕盛, 高振家, 王自强, 等. 中国地层典——新元古界[M]. 北京: 地质出版社, 1996: 1-117.

    Google Scholar

    [81] 邢智峰, 刘云龙, 付玉鑫, 等. 豫西鲁山中元古界云梦山组微生物成因沉积构造发育特征及古环境意义[J]. 沉积学报, 2020, 38(1): 46-55.

    Google Scholar

    [82] 叶荷, 张克信, 季军良, 等. 青海循化盆地23.1~5.0 Ma沉积地层中常量、微量元素组成特征及其古气候演变[J]. 地球科学, 2010, 35(5): 811-820.

    Google Scholar

    [83] 张恒, 高林志, 周洪瑞, 等. 华北克拉通南缘官道口群和洛峪群的年代学研究新进展——来自凝灰岩SHRIMP锆石U-Pb年龄的新证据[J]. 岩石学报, 2019, 35(8): 2470-2486.

    Google Scholar

    [84] 张健, 田辉, 李怀坤, 等. 华北克拉通北缘Columbia超大陆裂解事件: 来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据[J]. 岩石学报, 2015, 31(10): 3129-3146.

    Google Scholar

    [85] 张健, 李怀坤, 田辉. 华北克拉通南缘官道口群龙家园组凝灰岩SHRIMP锆石U-Pb年代学研究[J]. 华北地质, 2021, 44(4): 1-2.

    Google Scholar

    [86] 张拴宏, 赵越, 叶浩, 等. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约[J]. 岩石学报, 2013, 29(7): 2481-90.

    Google Scholar

    [87] 张严, 罗顺社, 吕奇奇, 等. 华北克拉通南缘中条山地区汝阳群沉积特征与层序地层分析[J]. 东北石油大学学报, 2018, 42(6): 22-32.

    Google Scholar

    [88] 赵太平, 周美夫, 金成伟, 等. 华北陆块南缘熊耳群形成时代讨论[J]. 地质科学, 2001, 36: 326-334.

    Google Scholar

    [89] 赵太平, 翟明国, 夏斌, 等. 熊耳群火山岩锆石SHRIMP年代学研究: 对华北克拉通盖层发育初始时间的制约[J]. 科学通报, 2004, 49: 2342-2349.

    Google Scholar

    [90] 郑伟, 孙凤余. 豫西鲁山汝阳群微生物成因构造宏观特征分析及其环境演化[J]. 地质调查与研究, 2011, 34(3): 170-176.

    Google Scholar

    [91] 周洪瑞. 豫西地区中、新元古界层序地层研究及其区域地层对比意义[J]. 现代地质, 1999, 13(2): 221-222.

    Google Scholar

    [92] 左鹏飞, 李雨, 刘思聪, 等. 华北克拉通南缘中-新元古代沉积演化: 以豫西地区黄连垛组和董家组为例[J]. 岩石学报, 2019, 35(8): 2545-2572.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1639) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint