2023 Vol. 42, No. 12
Article Contents

CHEN Limei, LIU Pinghua, DU Lilin, YANG Chonghui, ZHANG Wen, ZHOU Wanpeng. 2023. Depositional age and provenance of the Anshan Group in the Gongchangling area, Liaoning Province: Constraints from detrital zircon U-Pb-Hf isotopic and rare earth element composition in the garnet-staurolite-mica-quartz schist. Geological Bulletin of China, 42(12): 2037-2059. doi: 10.12097/j.issn.1671-2552.2023.12.003
Citation: CHEN Limei, LIU Pinghua, DU Lilin, YANG Chonghui, ZHANG Wen, ZHOU Wanpeng. 2023. Depositional age and provenance of the Anshan Group in the Gongchangling area, Liaoning Province: Constraints from detrital zircon U-Pb-Hf isotopic and rare earth element composition in the garnet-staurolite-mica-quartz schist. Geological Bulletin of China, 42(12): 2037-2059. doi: 10.12097/j.issn.1671-2552.2023.12.003

Depositional age and provenance of the Anshan Group in the Gongchangling area, Liaoning Province: Constraints from detrital zircon U-Pb-Hf isotopic and rare earth element composition in the garnet-staurolite-mica-quartz schist

More Information
  • The Anshan Group, which has undergone greenschist to amphibolite facies metamorphism and polyphase deformation, is one of the most important banded iron formation(BIF)-bearing meta-supracrustal rocks in the Eastern Block of the North China Craton.Depositional age and provenance of the Anshan Group are vital for understanding the tectonic setting of the BIF in the North China Craton.In this study, LA-MC-ICP-MS(laser ablation inductively coupled plasma mass spectrometry) was employed to analyze detrital zircon U-Pb-Hf isotope and rare earth element compositions of garnet-staurolite-mica-quartz schist from the Anshan Group in the Gongchangling area.Based on the internal structure, and U-Pb ages of detrital zircons, the peak age of 2528 Ma recorded by the youngest group of detrital zircons is chosen as the maximal depositional age of the Anshan Group, coupled with the geological relationship which the Anshan Group was intruded by the ca.2500 Ma Qidashan K-rich granites and 2510~2470 Ma metamorphic age of the Anshan Group, suggest that the Anshan Group was deposited between 2528 Ma and 2510 Ma, late Neoarchean.The 207Pb/206Pb ages of the detrital zircons from the studied sample is between 2931 Ma and 2454 Ma, and detrital zircon age patterns of the studied sample is characterized by the major peak of 2528 Ma.Combined with the internal structure of the detrital zircons, our new U-Pb ages reveal that the main provenance of Anshan Group is the late Neoarchean acid magmatic rocks.The two-stage Hf model ages of the typical detrital zircons are 3532~2711 Ma with a peak age of 2830 Ma, which further reveals that the intensive crustal growth in the Anshan-Benxi area was concentrated in Late Middle Archean.Integrated with previous geochemical data from Anshan Group in the Anshan-Benxi area, it is speculated that the Gongchangling BIF-bearing meta-supracrustal rocks of Anshan Group were probably deposited in a back-arc basin on the ancient continental margin.

  • 加载中
  • [1] Bao H, Liu S W, Wang M J, et al. Mesoarchean geodynamic regime evidenced from diverse granitoid rocks in the Anshan-Benxi area of the North China Craton[J]. Lithos, 2020, 366/367: 105574. doi: 10.1016/j.lithos.2020.105574

    CrossRef Google Scholar

    [2] Bao H, Liu S W, Wan Y S, et al. Neoarchean granitoids and tectonic regime of lateral growth in northeastern North China Craton[J]. Gondwana Research, 2022, 107: 176-200. doi: 10.1016/j.gr.2022.02.015

    CrossRef Google Scholar

    [3] Blichert-Toft J, Alberade F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

    Google Scholar

    [4] Cawood P A, Hawkerworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1

    CrossRef Google Scholar

    [5] Cui P L, Sun J G, Sha D M, et al. Oldest zircon xenocryst(4.17 Ga) from the North China Craton[J]. International Geology Review, 2013, 55(15): 1902-1908. doi: 10.1080/00206814.2013.805925

    CrossRef Google Scholar

    [6] Dai Y P, Zhu Y D, Zhang L C, et al. Meso-and Neoarchean Banded Iron Formations and Genesis of High-Grade Magnetite Ores in the Anshan-Benxi Area, North China Craton[J]. Economic Geology, 2017, 112: 1629-1651. doi: 10.5382/econgeo.2017.4524

    CrossRef Google Scholar

    [7] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.

    Google Scholar

    [8] Dong C Y, Wan Y S, Xie H Q, et al. The Mesoarchean Tiejiashan-Gongchangling potassic granite in the Anshan-Benxi area, North China Craton: origin by recycling of Paleo-to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies[J]. Lithos, 2017, 290/291: 116-135. doi: 10.1016/j.lithos.2017.08.009

    CrossRef Google Scholar

    [9] Grant M L, Wilde S A, Wu F Y, et al. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary[J]. Chemical Geology, 2009, 261: 155-171. doi: 10.1016/j.chemgeo.2008.11.002

    CrossRef Google Scholar

    [10] Griffin W L, Pearson N J, Belousova E. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [11] Griffin W L, Wang X, Jackson S E. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269.

    Google Scholar

    [12] Han C M, Xiao W J, Su B X, et al. Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in eastern Liaoning Province: Constraints from geochemistry and SHRIMP zircon U-Pb dating[J]. Precambrian Research, 2014, 254: 306-322. doi: 10.1016/j.precamres.2014.09.007

    CrossRef Google Scholar

    [13] Hoskin P W O, Ireland T R. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator[J]. Geology, 2000, 28(7): 627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2

    CrossRef Google Scholar

    [14] Hu Z C, Zhang W, Liu Y S, et al. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157. doi: 10.1021/ac503749k

    CrossRef Google Scholar

    [15] Li L X, Li H M, Liu M J, et al. Timing of deposition and tectonothermal events of banded iron formations in the Anshan-Benxi area, Liaoning Province, China: Evidence from SHRIMP U-Pb zircon geochronology of the wall rocks[J]. Journal of Asian Earth Sciences, 2016, 129: 276-293. doi: 10.1016/j.jseaes.2016.08.022

    CrossRef Google Scholar

    [16] Li L X, Zi J W, Li H M, et al. High-grade magnetite mineralization at 1.86 Ga in Neoarchean banded iron formations, Gongchangling, China: In situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2019, 114(6): 1159-1175. doi: 10.5382/econgeo.4678

    CrossRef Google Scholar

    [17] Liu D Y, Nutman A P, Compston W, et al. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 1992, 20(4): 339-342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

    CrossRef Google Scholar

    [18] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.

    Google Scholar

    [19] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [20] Ludwig K R. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, California, Berkeley, 2003: 1-39.

    Google Scholar

    [21] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [22] Peng P, Wang C, Wang X P, et al. Qingyuan high-grade granite-greenstone terrain in the Eastern North China Craton: Root of a Neoarchaean arc[J]. Tectonophysics, 2015, 662: 7-21. doi: 10.1016/j.tecto.2015.04.013

    CrossRef Google Scholar

    [23] Song B, Nutman A P, Liu D Y, et al. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China[J]. Precambrian Research, 1996, 78(1/3): 79-94.

    Google Scholar

    [24] Sun X H, Tang H S, Luan Y, et al. Geochronological constraints on the genesis of high-grade iron ore in the Gongchangling BIFs from the Anshan-Benxi area, North China Craton[J]. Ore Geology Reviews, 2020, 122: 103504. doi: 10.1016/j.oregeorev.2020.103504

    CrossRef Google Scholar

    [25] Tian Z H, Nutman A P. Structural restoration of an Eo-Mesoarchean(3.8-2.9 Ga) terrane, Eastern China, dissected by the Tanlu fault zone[J]. Journal of Structural Geology, 2022, 161: 10462.

    Google Scholar

    [26] Tong X X, Wang C L, Peng Z D, et al. Geochemistry of meta-sedimentary rocks associated with the Neoarchean Dagushan BIF in the Anshan-Benxi area, North China Craton: Implications for their provenance and tectonic setting[J]. Precambrian Research, 2019, 325: 172-191. doi: 10.1016/j.precamres.2019.02.022

    CrossRef Google Scholar

    [27] Vervoort J D, Patchett P J, Soderlund U, et al. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf by isotope dilution using MC-ICP-MS[J]. Geochemistry Geophysics Geosystems. 2004, 5: 1-15.

    Google Scholar

    [28] Wan Y S, Ma M, Dong C Y, et al. Widespread Late Neoarchean reworking of Meso-to Paleo-archean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes[J]. American Journal of Science, 2015, 315(7): 620-670. doi: 10.2475/07.2015.02

    CrossRef Google Scholar

    [29] Wan Y S, Dong C Y, Xie H Q, et al. Hadean to early Mesoarchean rocks and zircons in the North China Craton: A review[J]. Earth-Science Reviews, 2023a, 243: 104489. doi: 10.1016/j.earscirev.2023.104489

    CrossRef Google Scholar

    [30] Wan Y S, Dong C Y, Xie H Q, et al. SHRIMP U-Pb zircon dating and geochemistry of the 3.8-3.1 Ga Hujiamiao Complex in Anshan(North China Craton) and the significance of the trondhjemites for early crustal genesis[J]. Precambrian Research, 2023b, 388: 106975. doi: 10.1016/j.precamres.2023.106975

    CrossRef Google Scholar

    [31] Wang C L, Huang H, Tong X X, et al, Changing provenance of late Neoarchean metasedimentary rocks in the Anshan-Benxi area, North China Craton: Implications for the tectonic setting of the world-class Dataigou banded iron formation[J]. Gondwana Research, 2016, 40: 107-123. doi: 10.1016/j.gr.2016.08.010

    CrossRef Google Scholar

    [32] Wang C L, Peng Z D, Tong X X, et al. Late Neoarchean Supracrustal Rocks from the Anshan-Benxi Terrane, North China Craton: New Geodynamic Implications from the Geochemical Record[J]. American Journal of Science, 2017, 317(10): 1095-1148. doi: 10.2475/10.2017.02

    CrossRef Google Scholar

    [33] Wang Y F, Li X H, Jin W, et al. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81Ga Anshan trondhjemitic gneisses, North China Craton[J]. Precambrian Research, 2015, 263: 88-107. doi: 10.1016/j.precamres.2015.03.005

    CrossRef Google Scholar

    [34] Wu M L, Lin S F, Wan Y S, et al. Episodic Archean crustal accretion in the North China Craton: Insights from integrated zircon U-Pb-Hf-O isotopes of the Southern Jilin Complex, northeast China[J]. Precambrian Research, 2021, 358: 106150. doi: 10.1016/j.precamres.2021.106150

    CrossRef Google Scholar

    [35] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-118. doi: 10.1016/j.chemgeo.2007.10.003

    CrossRef Google Scholar

    [36] Zhai M G, Windley B F, Sills J D. Archaean gneisses, amphibolites and banded iron-formations from the Anshan area of Liaoning Province, NE China: their geochemistry, metamorphism and petrogenesis[J]. Precambrian Research, 1990, 46(3): 195-216. doi: 10.1016/0301-9268(90)90002-8

    CrossRef Google Scholar

    [37] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [38] Zhu M T, Dai Y P, Zhang L C, et al. Geochronology and Geochemistry of the Nanfen Iron Deposit in the Anshan-Benxi Area, North China Craton: Implications for ~2.55 Ga Crustal Growth and the Genesis of High-Grade Iron Ores[J]. Precambrian Research, 2015, 260: 23-38. doi: 10.1016/j.precamres.2015.01.001

    CrossRef Google Scholar

    [39] Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic(ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB) [J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

    [40] 白翔, 刘树文, 阎明, 等. 抚顺南部早前寒武纪变质杂岩的地质事件序列[J]. 岩石学报, 2014, 30(10): 2905-2924.

    Google Scholar

    [41] 陈光远, 黎美华, 汪雪芳, 等. 弓长岭铁矿成因矿物学专辑 第十章 矿床成因[J]. 矿物岩石, 1984, 4(2): 212-234.

    Google Scholar

    [42] 程裕淇. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题[J]. 地质学报, 1957, 37(2): 153-180.

    Google Scholar

    [43] 崔培龙. 鞍山-本溪地区铁建造型铁矿成矿构造环境与成矿、找矿模式研究[D]. 吉林大学博士学位论文, 2014: 1-145.

    Google Scholar

    [44] 代堰锫. 鞍本地区太古宙两期BIF成矿作用及富矿成因[D]. 中国科学院博士学位论文, 2014: 1-166.

    Google Scholar

    [45] 代堰锫, 张连昌, 王长乐, 等. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景[J]. 岩石学报, 2012, 28(11): 3574-3594.

    Google Scholar

    [46] 代堰锫, 张连昌, 朱明田, 等. 鞍山陈台沟BIF铁矿与太古代地壳增生: 锆石U-Pb年龄与Hf同位素约束[J]. 岩石学报, 2013, 29(7): 2537-2550.

    Google Scholar

    [47] 李曙光, 支霞臣, 陈江峰, 等. 鞍山前寒武纪条带状含铁建造中石墨的成因[J]. 地球化学, 1983, 2: 162-169.

    Google Scholar

    [48] 刘如琦, 郑峻庆, 张宝华, 等. 辽宁省本溪北台铁矿的构造控制规律——运用构造解析解决找矿问题的一个实例[J]. 地质找矿论丛, 1987, (4): 15-22.

    Google Scholar

    [49] 刘昕悦, 李婧, 刘永江, 等. 辽东鞍山齐大山韧性剪切带运动学解析及形成机制[J]. 地球科学, 2017, 42(12): 2129-2145.

    Google Scholar

    [50] 乔广生, 翟明国, 阎月华. 鞍山地区太古代岩石同位素地质年代学研究[J], 地质科学, 1990, 2: 158-165.

    Google Scholar

    [51] 宋彪, 伍家善, 万渝生, 等. 鞍山地区陈台沟表壳岩时代归属的初步研究[J]. 地球学报, 1994, 1/2: 14-16.

    Google Scholar

    [52] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48(S1): 26-30.

    Google Scholar

    [53] 万渝生. 辽宁弓长岭含铁岩系的形成与演化[M]. 北京: 科学出版社, 1993: 1-108.

    Google Scholar

    [54] 万渝生, 董春艳, 颉颃强, 等. 华北克拉通早前寒武纪条带状铁建造形成时代: SHRIMP锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1447-1478.

    Google Scholar

    [55] 万渝生, 董春艳, 颉颃强, 等. 鞍本地区鞍山群含BIF表壳岩形成时代新证据: 锆石SHRIMP U-Pb定年[J]. 地球科学, 2018, 43(1): 57-81.

    Google Scholar

    [56] 万渝生, 董春艳, 颉颃强, 等. 华北克拉通新太古代早期-中太古代晚期(2.6~3.0 Ga) 巨量陆壳增生: 综述[J]. 地质力学学报, 2022, 28(5): 866-906.

    Google Scholar

    [57] 万渝生, 颉颃强, 董春艳, 等. 最古老陆壳物质: 综述[J]. 科学通报, 2023, 68(18): 2296-2311.

    Google Scholar

    [58] 王守伦, 张瑞华. 齐大山铁矿黑云母变粒岩单锆石年龄及意义[J]. 矿床地质, 1995, 14(3): 216-219.

    Google Scholar

    [59] 杨崇科, 卢欣祥, 杨延伟, 等. 河南新蔡BIF铁矿床地球化学特征及矿床成因[J]. 地质通报, 2022, 41(7): 1258-1268.

    Google Scholar

    [60] 杨凤超, 孙景贵, 宋运红, 等. 辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 地球科学, 2016, 41(12): 2008-2018.

    Google Scholar

    [61] 杨振升, 俞保祥, 高德华. 辽宁歪头山变质-沉积铁矿构造变形研究[J]. 长春地质学院学报, 1983, (2): 11-23.

    Google Scholar

    [62] 杨秀清. 辽宁鞍山-本溪变质岩区铁成矿过程研究[D]. 中国地质大学(北京) 硕士学位论文, 2013: 1-126.

    Google Scholar

    [63] 袁玲玲, 刘洁, 张晓晖, 等. 辽北新太古代晚期岩浆热事件与陆壳生长: 来自清原奥长花岗岩的锆石U-Pb年代学和岩石地球化学证据[J]. 岩石学报, 2020, 36(2): 333-355.

    Google Scholar

    [64] 翟明国, Sills J D, Windley B F. 鞍山地区鞍山群变质矿物及变质作用[J]. 岩石矿物学杂志, 1990, 9(2): 148-158.

    Google Scholar

    [65] 张秋生. 辽东半岛早期地壳与矿床[M]. 北京: 地质出版社, 1988: 1-574.

    Google Scholar

    [66] 周世泰. 鞍山-本溪地区条带状铁矿地质[M]. 北京: 地质出版社, 1994: 1-276.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(1244) PDF downloads(155) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint