2023 Vol. 42, No. 12
Article Contents

DONG Yue, LIU Chang, CAO Weiwei, GUAN Liwei, DUAN Xingxing, LIU Min. 2023. Activation of the Central Kunlun Suture Zone, East Kunlun: Evidence from Carboniferous granites. Geological Bulletin of China, 42(12): 2060-2083. doi: 10.12097/j.issn.1671-2552.2023.12.004
Citation: DONG Yue, LIU Chang, CAO Weiwei, GUAN Liwei, DUAN Xingxing, LIU Min. 2023. Activation of the Central Kunlun Suture Zone, East Kunlun: Evidence from Carboniferous granites. Geological Bulletin of China, 42(12): 2060-2083. doi: 10.12097/j.issn.1671-2552.2023.12.004

Activation of the Central Kunlun Suture Zone, East Kunlun: Evidence from Carboniferous granites

More Information
  • In this publication, we identified Carboniferous intrusions for the first time in the Aksu River area, which has been relatively poorly explored in the western part of the East Kunlun.The Aksu acidic complex is located in the west section of the Central Kunlun fault zone.Zircon LA-ICP-MS dating results reveal that the granodiorite porphyry was crystallized at 361 ± 2.4 Ma, the monzogranite at 357.5 ± 2.8 Ma, and the granodiorite at 354 ± 4.3 Ma, indicating that these rocks were intruded during Late Devonian to Early Carboniferous(close to the west of Central Kunlun Suture Zone) and this stage of the magmatic event has not previously been publicly reported.Analysis of major elements classifies these rocks as belonging to the high potassium calc-alkaline to calc-alkaline and peraluminous series.Trace and rare earth elements indicate that all rocks are enriched in large ion lithophile elements(such as Th, U, Rb, K), light rare earth elements and depleted in high field strength elements(such as Nb, P, Ti).These granites have high initial 87Sr/86Sr(0.70612~0.71009), low whole-rock εNd(t) values(-7.1~-5.1) and relative ancient TDM2 model ages ranging from 1.51 Ga to 1.69 Ga, which is comparable to the composition of enriched mantle or crust in the East Kunlun Orogen.Mineralogical and geochemical analyses indicate that the rocks are I-type granites, formed by remelting of crustal material, suggesting that the Central Kunlun Suture Zone underwent extensional setting during the Carboniferous.Combined with the regional geology and available geochronological data, we propose that this extensional event should be the result of the initial expansion of a back-arc basin caused by subduction of the Paleo-Tethys Ocean, which also places the time of initial subduction of the Paleo-Tethys Ocean in the Carboniferous rather than the Permian.

  • 加载中
  • [1] Chappell B W, Stephens W E. Origin of infracrustal(I-type) granite magmas[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1988, 79(2/3): 71-86.

    Google Scholar

    [2] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [3] Chen J, Fu L, Wei J, et al. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian-Middle Devonian A-type magmatism, East Kunlun Orogen, Northern Xizang Plateau, China[J]. Lithos, 2020, 356/357: 105304. doi: 10.1016/j.lithos.2019.105304

    CrossRef Google Scholar

    [4] Chen L, Sun Y, Pei X Z, et al. Northernmost Paleo-Tethyan oceanic basin in Xizang: geochronological evidence from 40Ar/39Ar age dating of Dur'ngoi ophiolite[J]. Chinese Science Bulletin, 2001, 46: 1203-1205. doi: 10.1007/BF02900603

    CrossRef Google Scholar

    [5] Dong Y, He D, Sun S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006

    CrossRef Google Scholar

    [6] Dong Y, Sun S, Liu X, et al. Geochronology and geochemistry of the Yazidaban ophiolitic mélange in Qimantagh: constraints on the Early Paleozoic back-arc basin of the East Kunlun Orogen, northern Xizang Plateau[J]. Journal of the Geological Society, 2019, 176(2): 306-322. doi: 10.1144/jgs2018-145

    CrossRef Google Scholar

    [7] Frost B R. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [8] Hawkesworth C, Gallagher K, Herot J, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth Planetary Sciences, 1993, 21: 175-2004. doi: 10.1146/annurev.ea.21.050193.001135

    CrossRef Google Scholar

    [9] Huang H, Niu Y L, Nowell G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Xizang Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 2014, 370: 1-18. doi: 10.1016/j.chemgeo.2014.01.010

    CrossRef Google Scholar

    [10] Huang H, Niu Y, Mo X. Syn-collisional granitoids in the Qilian Block on the Northern Xizang Plateau: A long-lasting magmatism since continental collision through slab steepening[J]. Lithos, 2016, 246/247: 99-109. doi: 10.1016/j.lithos.2015.12.018

    CrossRef Google Scholar

    [11] Icenhower J, Longdon D. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt[J]. American Mineralogist, 1996, 81: 719-734. doi: 10.2138/am-1996-5-619

    CrossRef Google Scholar

    [12] Karsli O, Dokuz A, Uysal I, et al. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey[J]. Contributions to Mineralogy and Petrology, 2010, 160: 467-487. doi: 10.1007/s00410-010-0489-z

    CrossRef Google Scholar

    [13] Lee C T A, Bachmann O. How important is the role of crystal fractionation in making intermediate magmas?Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393: 266-274. doi: 10.1016/j.epsl.2014.02.044

    CrossRef Google Scholar

    [14] Ludwig K R. ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[M]. Berkeley, 2003.

    Google Scholar

    [15] Meng F C, Zhang J X, Cui M H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 2013, 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007

    CrossRef Google Scholar

    [16] Middlemost E A K. Magmas and magmatic rocks: an introduction to igneous petrology[M]. London: Longman, 1985: 1-266.

    Google Scholar

    [17] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [18] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983 doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [19] Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contribution to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [20] Roberts M, Clemens J. Origin of high-potassium, calc-alkaline, I-type granitoids[J]. Geology, 1993, 21: 825-828.

    Google Scholar

    [21] Song S, Bi H, Qi S, et al. HP-UHP metamorphic belt in the East Kunlun Orogen: final closure of the Proto-Tethys Ocean and formation of the Pan-North-China Continent[J]. Journal of Petrology, 2018, 59(11): 2043-2060. doi: 10.1093/petrology/egy089

    CrossRef Google Scholar

    [22] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [23] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29-44.

    Google Scholar

    [24] Wang Q, Xu J, Jian P, et al. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    [25] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [26] Xin W, Sun F, Li L, et al. The Wulonggou metaluminous A 2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension[J]. Lithos, 2018, 312/313: 108-127. doi: 10.1016/j.lithos.2018.05.005

    CrossRef Google Scholar

    [27] Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Xizang Plateau: implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J]. Mineralogy and Petrology, 2012, 104(3/4): 211-224.

    Google Scholar

    [28] Xiong F H, Ma C Q, Hong J A, et al. Multi-style modification of subcontinental lithospheric mantle during a Tethys orogeny: evidence from Permo-Triassic mafic dike swarms in Northern Xizang Plateau[J]. Acta Geologica Sinica(English Edition), 2013, 87(supp): 274-276.

    Google Scholar

    [29] Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Xizang Plateau[J]. Journal of the Geological Society, 2014, 171(6): 847-863. doi: 10.1144/jgs2013-038

    CrossRef Google Scholar

    [30] Zhang J Y, Ma C Q, Xiong F H, et al. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break-off[J]. Lithos, 2014, 210/211: 129-146. doi: 10.1016/j.lithos.2014.10.003

    CrossRef Google Scholar

    [31] Zhao X, Wei J, Fu L, et al. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen[J]. Lithos, 2020, 360/361: 105446. doi: 10.1016/j.lithos.2020.105446

    CrossRef Google Scholar

    [32] Zheng Z, Chen Y, Deng X, et al. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean[J]. Lithos, 2018, 296/299(Supplement C): 181-194.

    Google Scholar

    [33] Zhu Z, Campbell I H, Allen C M, et al. S-type granites: Their origin and distribution through time as determined from detrital zircons[J]. Earth and Planetary Science Letters, 2020, 536: 116140. doi: 10.1016/j.epsl.2020.116140

    CrossRef Google Scholar

    [34] 陈国超. 东昆仑南缘印支期花岗岩岩石成因及其地质意义[D]. 长安大学硕士学位论文, 2011.

    Google Scholar

    [35] 陈国超. 东昆仑造山带(东段) 晚古生代-早中生代花岗质岩石特征、成因及地质意义[D]. 长安大学博士学位论文, 2014.

    Google Scholar

    [36] 谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J]. 岩石矿物学杂志, 2006, 25(1): 25-32.

    Google Scholar

    [37] 陈静, 谢智勇, 李彬, 等. 东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J]. 矿物岩石, 2013, 33(2): 26-34.

    Google Scholar

    [38] 陈能松, 朱杰, 游振东, 等. 中央山系大别、东秦岭和东昆仑造山带最古老岩系变质过程对比[J]. 地球科学, 1998, 23(5): 15-20.

    Google Scholar

    [39] 陈有炘, 裴先治, 李瑞保, 等. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地学前缘, 2013, 20(6): 240-254.

    Google Scholar

    [40] 陈有炘, 裴先治, 李瑞保, 等. 东昆仑东段纳赤台岩群变沉积岩地球化学特征及构造意义[J]. 现代地质, 2014, 28(3): 489-500.

    Google Scholar

    [41] 国显正, 贾群子, 李金超, 等. 东昆仑高压变质带榴辉岩、榴闪岩年代学、地球化学及其地质意义[J]. 地球科学, 2018, 43(12): 1-23.

    Google Scholar

    [42] 郝娜娜, 袁万明, 曹建辉, 等. 东昆仑喀雅克登塔格晚泥盆世花岗闪长岩的发现与地质意义[J]. 西北地质, 2014, 47(1): 107-115. doi: 10.3969/j.issn.1009-6248.2014.01.008

    CrossRef Google Scholar

    [43] 贾丽辉, 孟繁聪, 冯惠彬. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报, 2014, 30(8): 2339-2350.

    Google Scholar

    [44] 李积清, 王秉璋, 王涛, 等. 东昆仑黑刺沟金矿区晚奥陶世花岗斑岩的成因: 锆石U-Pb年龄、岩石地球化学和Sr-Nd-Pb-Hf同位素制约[J]. 地质通报, 2022, 41(12): 2173-2185.

    Google Scholar

    [45] 李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244-254.

    Google Scholar

    [46] 李瑞保, 裴先治, 李佐臣, 等. 东昆中构造混杂岩带清泉沟弧前玄武岩地质、地球化学特征及构造环境[J]. 地球科学, 2018, 43(12): 4521-4535.

    Google Scholar

    [47] 刘彬, 马昌前, 郭盼, 等. 东昆仑中泥盆世A型花岗岩的确定及其构造意义[J]. 地球科学(中国地质大学学报), 2013, 38(5): 947-962.

    Google Scholar

    [48] 刘成东, 周肃, 莫宣学, 等. 东昆仑造山带后碰撞花岗岩岩石地球化学和40Ar/39Ar同位素年代学约束[J]. 华东地质学院学报, 2003, (4): 301-305. doi: 10.3969/j.issn.1674-3504.2003.04.001

    CrossRef Google Scholar

    [49] 刘战庆, 裴先治, 李瑞保, 等. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J]. 地质学报, 2011, 85(2): 185-194.

    Google Scholar

    [50] 陆露, 吴珍汉, 胡道功, 等. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J]. 岩石学报, 2010, 26(4): 1150-1158.

    Google Scholar

    [51] 陆露, 张延林, 吴珍汉, 等. 东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义[J]. 地球学报, 2013, 34(4): 447-454.

    Google Scholar

    [52] 马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-3568.

    Google Scholar

    [53] 孟繁聪, 崔美慧, 贾丽辉, 等. 东昆仑榴辉岩的原岩性质[C]//中国地球科学联合学术年会, 2014: 2.

    Google Scholar

    [54] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.

    Google Scholar

    [55] 潘桂棠, 丁俊, 王立全, 庄育勋, 等. 青藏高原区域地质调查重要新进展[J]. 地质通报, 2002, 21(11): 787-793. doi: 10.3969/j.issn.1671-2552.2002.11.018

    CrossRef Google Scholar

    [56] 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356.

    Google Scholar

    [57] 祁晓鹏, 范显刚, 杨杰, 等. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 2016, 35(11): 1771-1783.

    Google Scholar

    [58] 任军虎, 柳益群, 周鼎武, 等. 东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J]. 吉林大学学报(地球科学版), 2010, 40(4): 859-868.

    Google Scholar

    [59] 施彬, 朱云海, 钟增球, 等. 东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义[J]. 地球科学, 2016, 41(1): 35-54.

    Google Scholar

    [60] 田广阔, 孟繁聪, 范亚洲, 等. 东昆仑早古生代造山后花岗岩的特征——以大干沟花岗岩为例[J]. 岩石矿物学杂志, 2016, 35(3): 371-390.

    Google Scholar

    [61] 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J]. 大地构造与成矿学, 2013, 37(4): 685-697.

    Google Scholar

    [62] 王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘, 2004, 11(4): 481-490. doi: 10.3321/j.issn:1005-2321.2004.04.014

    CrossRef Google Scholar

    [63] 王艺龙, 李艳军, 魏俊浩, 等. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约[J]. 地球科学, 2018, (4): 1219-1236.

    Google Scholar

    [64] 王增振, 韩宝福, 丰成友, 等. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 2014, 33(4): 597-616. doi: 10.3969/j.issn.1000-6524.2014.04.001

    CrossRef Google Scholar

    [65] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238.

    Google Scholar

    [66] 武若晨, 顾雪祥, 章永梅, 等. 东昆仑造山带早古生代-早中生代构造演化的沉积地球化学记录[J]. 现代地质, 2017, 31(4): 716-733. doi: 10.3969/j.issn.1000-8527.2017.04.007

    CrossRef Google Scholar

    [67] 熊富浩, 马昌前. 东昆仑中部原特提斯洋壳深俯冲事件的岩石学证据[R]. 成都: 20162.

    Google Scholar

    [68] 殷鸿福, 张克信. 中央造山带的演化及其特点[J]. 地球科学, 1998, (5): 3-5.

    Google Scholar

    [69] 张耀玲, 胡道功, 石玉若, 等. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 2010, 29(11): 1614-1618.

    Google Scholar

    [70] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, (1): 267-286.

    Google Scholar

    [71] 朱弟成, 莫宣学, 王立全, 等. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J]. 中国科学: 地球科学, 2009, 39(7): 833-848.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(4)

Article Metrics

Article views(1003) PDF downloads(135) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint