Citation: | ZENG Guangqian, CHEN Bailin, SHEN Jinghui, GAO Yun, LI Zehong. 2023. Deformation characteristics of Cretaceous strata and its dynamic background, southwestern Fuzhou Basin, Jiangxi. Geological Bulletin of China, 42(11): 1938-1953. doi: 10.12097/j.issn.1671-2552.2023.11.011 |
The continental red clastic sedimentary rocks are exposed in the Tanqiu-Daifang area in the southwestern part of Fuzhou Basin.Zircon U-Pb dating sets the sedimentary lower limit of this formation at 109 Ma, confirming the previous understanding that it was classified as the Upper Cretaceous.Field observations show that there are two stages of compressional tectonic deformation developed in the Upper Cretaceous strata.The first stage of NNW-trending compression was mainly characterized by NEE-trending conjugate joints and flattened calcareous concretions.Systematic measurements of finite strain of calcareous concretions in the calcareous siltstone indicate the strain type was mainly flattening strain.The second stage of NE-trending compression was marked by the development of NW-trending thrusting fractures, which cut the first stage of deformations on a small scale.Combined with the tectonic evolution history of eastern China in the Mesozoic and Cenozoic, the dynamic backgrounds of these deformations are determined: the first stage NNW-trending compression may be related to the northward migration of Indian Plate and subsequent collision with the Eurasia Plate in the Early Paleogene; the second stage of NE-trending compression may be associated with the local compressive stress field derived from the dextral strike sliping of the Ganjiang fault zone, and its dynamic background may be the eastward escape of Tibetan Plateau caused by the collision between Indian and Eurasian plates during the middle to Late Paleogene.
[1] | Aitchison J C, Davis A M. When did the India-Asia collision really happen? [J]. Gondwana Research, 2001, 4(4): 560-561. doi: 10.1016/S1342-937X(05)70363-4 |
[2] | Allen M B, MacDonald D I M, Xun Z, et al. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 1997, 14(7): 951-972. |
[3] | Arlegui L, Simon J L. Geometry and distribution of regional joint sets in a non-homogeneous stress field: Case study in the Ebro basin(Spain)[J]. Journal of Structural Geology, 2001, 23(2): 297-313. |
[4] | Bailey C M, Eyster E L. General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona[J]. Journal of Structural Geology, 2003, 25(11): 1883-1892. doi: 10.1016/S0191-8141(03)00044-0 |
[5] | Becker A, Gross M R. Mechanism for joint saturation in mechanically layeredrocks: An example from southern Israel[J]. Tectonophysics, 1996, 257: 223-237. doi: 10.1016/0040-1951(95)00142-5 |
[6] | Cawood P, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1 |
[7] | Coney P J, Reynolds S J. CordilleranBenioff zones[J]. Nature, 1977, 270: 403-406. doi: 10.1038/270403a0 |
[8] | Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. |
[9] | Eyal Y, Gross M R, Engelder T, et al. Joint development during fluctuation of the regional stress field in southern Israel[J]. Journal of Structural Geology, 2001, 23(2): 279-296. |
[10] | Gilder S A, Leloup P H, Courtillot V, et al. Tectonic evolution of the Tancheng-Lujiang(Tan-Lu)fault via Middle Triassic to Early Cenozoic paleomagnetic data[J]. Journal of Geophysical Research, 1999, 104(B7): 15365-15390. doi: 10.1029/1999JB900123 |
[11] | Hu R Z, Bi X W, Zhou M F, et al. Uraniummetallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary[J]. Economic Geology, 2008a, 103(3): 583-598. doi: 10.2113/gsecongeo.103.3.583 |
[12] | Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in thecentral channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008b, 23: 1093-1101. doi: 10.1039/b804760j |
[13] | Jolivet L, Tamaki K, Fournier M. Japan Sea, opening history and mechanism: A synthesis[J]. Journal of Geophysical Research, 1994, 99(B11): 22237-22259. doi: 10.1029/93JB03463 |
[14] | Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121[J]. Geology, 1992, 20(5): 395-398. doi: 10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2 |
[15] | Koppers A A P, Morgan J P, Morgan J W, et al. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails[J]. Earth and Planetary Science Letters, 2001, 185(3/4): 237-252. |
[16] | Koppers A A P, Staudigel H, Duncan R A. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin[J]. Geochemistry Geophysics Geosystems, 2003, 4(11): 8914. |
[17] | Li Z X, Li X H. Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182. doi: 10.1130/G23193A.1 |
[18] | Li J H, Zhang Y Q, Dong S W, et al. Late Mesozoic-Early Cenozoic deformation history of theYuanma Basin, central South China[J]. Tectonophysics, 2012, 570/571: 163-183. doi: 10.1016/j.tecto.2012.08.012 |
[19] | Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of south China: A preliminary synthesis[J]. Earth-Science Reviews, 2014a, 134: 98-136. doi: 10.1016/j.earscirev.2014.03.008 |
[20] | Li J H, Ma Z L, Zhang Y Q, et al. Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, eastern South China: Structural andgeochronological constraints[J]. International Geology Review, 2014b, 56(13): 1602-1629. doi: 10.1080/00206814.2014.951978 |
[21] | Li J H, Cawood P A, Ratschbacher L, et al. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth-Science Reviews, 2020, 201: 103056. doi: 10.1016/j.earscirev.2019.103056 |
[22] | Liang C Y, Liu Y J, Neubauer F, et al. Structural characteristics and LA-ICP-MS U-Pb zircon geochronology of the deformed granitic rocks from the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton[J]. Tectonophysics, 2015a, 650: 80-103. doi: 10.1016/j.tecto.2014.05.010 |
[23] | Liang C Y, Liu Y J, Neubauer F, et al. Structures, kinematic analysis, rheological parameters and temperature-pressure estimate of the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton[J]. Journal of Structural Geology, 2015b, 78: 27-51. doi: 10.1016/j.jsg.2015.06.007 |
[24] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. |
[25] | Ludwig K R. User's Manual forIsoplot 3.0: A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003, 4(1): 1-71. |
[26] | McKenzie D. Active tectonics of the Mediterraneanregion[J]. Geophysical Journal of the Royal Astronomical Society, 1972, 30: 109-185. doi: 10.1111/j.1365-246X.1972.tb02351.x |
[27] | Molnar P, Tapponnier P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. doi: 10.1126/science.189.4201.419 |
[28] | Ramsay J G. Shear zone geometry: A review[J]. Journal of Structural Geology, 1980, 2(1/2): 83-99. |
[29] | Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacentareas[J]. Tectonophysics, 2002, 344: 175-205. doi: 10.1016/S0040-1951(01)00271-2 |
[30] | Shinn Y J, Chough S K, Hwang I G. Structural development and tectonic evolution ofGunsan Basin(Cretaceous-Tertiary)in the central Yellow Sea[J]. Marine and Petroleum Geology, 2010, 27(2): 500-514. doi: 10.1016/j.marpetgeo.2009.11.001 |
[31] | Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China Block: New insights from basinanalysis[J]. Journal of Asian Earth Sciences, 2009, 34(3): 376-391. doi: 10.1016/j.jseaes.2008.06.004 |
[32] | Shu L S, Zhou X M, Deng P, et al. Mesozoic-Cenozoic basin features and evolution of Southeast China[J]. Acta Geologica Sinica, 2007, 81(4): 573-586. doi: 10.1111/j.1755-6724.2007.tb00981.x |
[33] | Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the westPacific[J]. Earth and Planetary Science Letters, 2007, 262(34): 533-542. |
[34] | Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society of London Special Publications, 1986, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07 |
[35] | Xu X B, Tang S, Lin S F. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China[J]. Journal of Geodynamics, 2016, 98: 31-52. doi: 10.1016/j.jog.2016.03.013 |
[36] | Yang Y T. An unrecognized major collision of theOkhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 2013, 126: 96-115. doi: 10.1016/j.earscirev.2013.07.010 |
[37] | Yin A. Cenozoic tectonic evolution of Asia: A preliminarysynthesis[J]. Tectonophysics, 2010, 488(14): 293-325. |
[38] | Zhang Y Q, Dong S W, Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China[J]. Tectonophysics, 2003, 363(3/4): 243-258. |
[39] | 柏道远, 钟响, 贾朋远, 等. 雪峰造山带靖州盆地断裂构造及其形成背景探讨[J]. 大地构造与成矿学, 2013a, 37(2): 173-183. |
[40] | 柏道远, 钟响, 贾朋远, 等. 雪峰造山带南段靖州盆地成因性质及形成背景[J]. 中国地质, 2013b, 40(4): 1079-1091. |
[41] | 柏道远, 熊雄, 杨俊, 等. 雪峰造山带中段地质构造特征[J]. 中国地质, 2014, 41(2): 399-418. |
[42] | 柏道远, 姜文, 钟响, 等. 湘西沅麻盆地中新生代构造变形特征及区域地质背景[J]. 中国地质, 2015, 42(6): 1851-1875. |
[43] | 陈留勤, 郭福生, 梁伟, 等. 江西抚崇盆地上白垩统河口组砾石统计特征及其地质意义[J]. 现代地质, 2013, 27(3): 74-82. |
[44] | 陈正乐, 王永, 周永贵, 等. 江西相山火山-侵入杂岩体锆石SHRIMP定年及其地质意义[J]. 中国地质, 2013, 40(1): 217-231. |
[45] | 邓平, 舒良树, 杨明桂, 等. 赣江断裂带地质特征及其动力学演化[J]. 地质论评, 2003, 49(2): 113-122. |
[46] | 韩阳光, 颜丹平, 李政林. 在CorelDRAW平台上进行Fry法有限应变测量的新技术[J]. 现代地质, 2015, 29(3): 494-500. |
[47] | 江西省地质调查研究院. 江西省1: 25万抚州市幅建造构造图[R]. 2009. |
[48] | 江新胜, 潘忠习, 徐金沙, 等. 江西信江盆地晚白垩世风成沙丘的发现及其古风向[J]. 地质通报, 2006, 25(7): 833-838. |
[49] | 李宏伟, 许坤. 郯庐断裂走滑活动与辽河盆地构造古地理格局[J]. 地学前缘, 2001, 8(4): 467-470. |
[50] | 李建波, 郭磊, 欧阳志侠, 等. 辽南变质核杂岩韧性拆离带的变形特征、应变与运动学涡度分析[J]. 北京大学学报(自然科学版), 2015, 51(6): 1078-1090. |
[51] | 李建华. 华南中生代大地构造过程—源于北部大巴山和中部沅麻盆地、衡山的构造变形及年代学约束[D]. 中国地质科学院博士学位论文, 2013: 1-205. |
[52] | 梁琛岳, 刘永江, 孟婧瑶, 等. 舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算[J]. 地球科学, 2015, 40(1): 115-129. |
[53] | 刘景彦, 林畅松, 卢林, 等. 江汉盆地白垩-新近系主要不整合面剥蚀量分布及其构造意义[J]. 地质科技情报, 2009, 28(1): 1-8. |
[54] | 申文杰, 刘少峰, 张博, 等. 胶莱盆地白垩纪构造演化[J]. 大地构造与成矿学, 2020, 44(3): 325-339. |
[55] | 舒良树, 周新民, 邓平, 等. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 2004, 23(910): 876-884. |
[56] | 唐永, 刘怀庆, 黎清华, 等. 广西灵山断裂带构造应力场地质分析及活动性预测[J]. 大地构造与成矿学, 2015, 39(1): 62-75. |
[57] | 万天丰. 中国东部中、新生代板内变形构造应力场及其应用[M]. 北京: 地质出版社, 1993: 1-103. |
[58] | 万天丰, 朱鸿. 中国大陆及邻区中生代-新生代大地构造与环境变迁[J]. 现代地质, 2002, 16(2): 107-120. |
[59] | 万天丰. 中国大地构造学纲要[M]. 北京: 地质出版社, 2004: 152-179. |
[60] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[61] | 徐先兵. 武夷山地区显生宙构造变形与年代学研究[D]. 南京大学博士学位论文, 2011: 1-136. |
[62] | 杨水源, 蒋少涌, 赵葵东, 等. 江西相山铀矿田如意亭剖面火山岩的年代学格架及其地质意义[J]. 岩石学报, 2013, 29(12): 4362-4372. |
[63] | 余心起, 舒良树, 邓平, 等. 中国东南部侏罗纪-第三纪陆相地层沉积特征[J]. 地层学杂志, 2003, 27(3): 254-263. |
[64] | 余心起, 舒良树, 颜铁增, 等. 赣杭构造带红层盆地原型及其沉积作用[J]. 沉积学报, 2005, 23(1): 12-20. |
[65] | 曾广乾, 梁恩云, 熊苗, 等. 湘南江永地区多期褶皱的变形特征及叠加关系[J]. 地质科技情报, 2019, 38(4): 153-165. |
[66] | 曾广乾, 陈柏林, 申景辉, 等. 抚州盆地晚中生代—新生代构造变形特征、形成背景及地质意义[J]. 大地构造与成矿学, 2021a, 45(6): 1094-1110. |
[67] | 曾广乾, 梁恩云, 刘庚寅, 等. 桂北丹池成矿带南段五圩矿田构造变形、控矿特征和找矿预测[J]. 地质论评, 2021b, 67(6): 1727-1748. |
[68] | 曾先进, 王明, 范建军, 等. 拉萨-羌塘板块碰撞——来自西藏阿索晚白垩世红层的约束[J]. 地质通报, 2021, 40(9): 1428-1442. |
[69] | 张进, 马宗晋, 杨健, 等. 雪峰山西麓中生代盆地属性及构造意义[J]. 地质学报, 2010, 84(5): 631-650. |
[70] | 张岳桥, 董树文, 李建华, 等. 华南中生代大地构造研究新进展[J]. 地球学报, 2012, 33(3): 257-279. |
[71] | 张岳桥, 赵越, 董树文, 等. 中国东部及邻区早白垩世裂陷盆地构造演化阶段[J]. 地学前缘, 2004, 11(3): 123-133. |
[72] | 张族坤, 徐亚军, 刘强, 等. 华南东部白垩纪晚期—古近纪构造转换的沉积记录——以粤北南雄盆地为例[J]. 大地构造与成矿学, 2019, 43(3): 575-589. |
[73] | 郑亚东, 常志忠. 岩石有限应变测量及韧性剪切带[M]. 北京: 地质出版社, 1985: 1-194. |
Location(a), regional geological map(b) and stratigraphic column(c)of the study area in the southwestern part of Fuzhou Basin
Geological map(a), cross section(b) and lower hemisphere equal-area projections of the structural elements(c~f)in the study area
Field photographs and their sketch analyses showing typical deformation structures at D07
Field photographs and their sketch analyses showing typical deformation structures at D08
NEE-EW-trending strike slip-reverse fault at D11
Flinn finite strain discrimination diagram
Zircon U-Pb concordia plots(a, c) and typical zircon cathodoluminescence images(b) of calcareous siltstone
Paleo-tectonogeographic construction sketch of China continent and its adjacent areas in late stage of Sichuannian (65 Ma) (a), northward subduction model of Indian Plate (b), paleo-tectonogeographic construction sketch of China continent and its adjacent areas in late stage of North Sinian (23.5 Ma) (c) and extrusion model of Tibetan Plateau (d)