2023 Vol. 42, No. 11
Article Contents

ZENG Guangqian, CHEN Bailin, SHEN Jinghui, GAO Yun, LI Zehong. 2023. Deformation characteristics of Cretaceous strata and its dynamic background, southwestern Fuzhou Basin, Jiangxi. Geological Bulletin of China, 42(11): 1938-1953. doi: 10.12097/j.issn.1671-2552.2023.11.011
Citation: ZENG Guangqian, CHEN Bailin, SHEN Jinghui, GAO Yun, LI Zehong. 2023. Deformation characteristics of Cretaceous strata and its dynamic background, southwestern Fuzhou Basin, Jiangxi. Geological Bulletin of China, 42(11): 1938-1953. doi: 10.12097/j.issn.1671-2552.2023.11.011

Deformation characteristics of Cretaceous strata and its dynamic background, southwestern Fuzhou Basin, Jiangxi

More Information
  • The continental red clastic sedimentary rocks are exposed in the Tanqiu-Daifang area in the southwestern part of Fuzhou Basin.Zircon U-Pb dating sets the sedimentary lower limit of this formation at 109 Ma, confirming the previous understanding that it was classified as the Upper Cretaceous.Field observations show that there are two stages of compressional tectonic deformation developed in the Upper Cretaceous strata.The first stage of NNW-trending compression was mainly characterized by NEE-trending conjugate joints and flattened calcareous concretions.Systematic measurements of finite strain of calcareous concretions in the calcareous siltstone indicate the strain type was mainly flattening strain.The second stage of NE-trending compression was marked by the development of NW-trending thrusting fractures, which cut the first stage of deformations on a small scale.Combined with the tectonic evolution history of eastern China in the Mesozoic and Cenozoic, the dynamic backgrounds of these deformations are determined: the first stage NNW-trending compression may be related to the northward migration of Indian Plate and subsequent collision with the Eurasia Plate in the Early Paleogene; the second stage of NE-trending compression may be associated with the local compressive stress field derived from the dextral strike sliping of the Ganjiang fault zone, and its dynamic background may be the eastward escape of Tibetan Plateau caused by the collision between Indian and Eurasian plates during the middle to Late Paleogene.

  • 加载中
  • [1] Aitchison J C, Davis A M. When did the India-Asia collision really happen? [J]. Gondwana Research, 2001, 4(4): 560-561. doi: 10.1016/S1342-937X(05)70363-4

    CrossRef Google Scholar

    [2] Allen M B, MacDonald D I M, Xun Z, et al. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 1997, 14(7): 951-972.

    Google Scholar

    [3] Arlegui L, Simon J L. Geometry and distribution of regional joint sets in a non-homogeneous stress field: Case study in the Ebro basin(Spain)[J]. Journal of Structural Geology, 2001, 23(2): 297-313.

    Google Scholar

    [4] Bailey C M, Eyster E L. General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona[J]. Journal of Structural Geology, 2003, 25(11): 1883-1892. doi: 10.1016/S0191-8141(03)00044-0

    CrossRef Google Scholar

    [5] Becker A, Gross M R. Mechanism for joint saturation in mechanically layeredrocks: An example from southern Israel[J]. Tectonophysics, 1996, 257: 223-237. doi: 10.1016/0040-1951(95)00142-5

    CrossRef Google Scholar

    [6] Cawood P, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1

    CrossRef Google Scholar

    [7] Coney P J, Reynolds S J. CordilleranBenioff zones[J]. Nature, 1977, 270: 403-406. doi: 10.1038/270403a0

    CrossRef Google Scholar

    [8] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.

    Google Scholar

    [9] Eyal Y, Gross M R, Engelder T, et al. Joint development during fluctuation of the regional stress field in southern Israel[J]. Journal of Structural Geology, 2001, 23(2): 279-296.

    Google Scholar

    [10] Gilder S A, Leloup P H, Courtillot V, et al. Tectonic evolution of the Tancheng-Lujiang(Tan-Lu)fault via Middle Triassic to Early Cenozoic paleomagnetic data[J]. Journal of Geophysical Research, 1999, 104(B7): 15365-15390. doi: 10.1029/1999JB900123

    CrossRef Google Scholar

    [11] Hu R Z, Bi X W, Zhou M F, et al. Uraniummetallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary[J]. Economic Geology, 2008a, 103(3): 583-598. doi: 10.2113/gsecongeo.103.3.583

    CrossRef Google Scholar

    [12] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in thecentral channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008b, 23: 1093-1101. doi: 10.1039/b804760j

    CrossRef Google Scholar

    [13] Jolivet L, Tamaki K, Fournier M. Japan Sea, opening history and mechanism: A synthesis[J]. Journal of Geophysical Research, 1994, 99(B11): 22237-22259. doi: 10.1029/93JB03463

    CrossRef Google Scholar

    [14] Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121[J]. Geology, 1992, 20(5): 395-398. doi: 10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2

    CrossRef Google Scholar

    [15] Koppers A A P, Morgan J P, Morgan J W, et al. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails[J]. Earth and Planetary Science Letters, 2001, 185(3/4): 237-252.

    Google Scholar

    [16] Koppers A A P, Staudigel H, Duncan R A. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin[J]. Geochemistry Geophysics Geosystems, 2003, 4(11): 8914.

    Google Scholar

    [17] Li Z X, Li X H. Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182. doi: 10.1130/G23193A.1

    CrossRef Google Scholar

    [18] Li J H, Zhang Y Q, Dong S W, et al. Late Mesozoic-Early Cenozoic deformation history of theYuanma Basin, central South China[J]. Tectonophysics, 2012, 570/571: 163-183. doi: 10.1016/j.tecto.2012.08.012

    CrossRef Google Scholar

    [19] Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of south China: A preliminary synthesis[J]. Earth-Science Reviews, 2014a, 134: 98-136. doi: 10.1016/j.earscirev.2014.03.008

    CrossRef Google Scholar

    [20] Li J H, Ma Z L, Zhang Y Q, et al. Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, eastern South China: Structural andgeochronological constraints[J]. International Geology Review, 2014b, 56(13): 1602-1629. doi: 10.1080/00206814.2014.951978

    CrossRef Google Scholar

    [21] Li J H, Cawood P A, Ratschbacher L, et al. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth-Science Reviews, 2020, 201: 103056. doi: 10.1016/j.earscirev.2019.103056

    CrossRef Google Scholar

    [22] Liang C Y, Liu Y J, Neubauer F, et al. Structural characteristics and LA-ICP-MS U-Pb zircon geochronology of the deformed granitic rocks from the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton[J]. Tectonophysics, 2015a, 650: 80-103. doi: 10.1016/j.tecto.2014.05.010

    CrossRef Google Scholar

    [23] Liang C Y, Liu Y J, Neubauer F, et al. Structures, kinematic analysis, rheological parameters and temperature-pressure estimate of the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton[J]. Journal of Structural Geology, 2015b, 78: 27-51. doi: 10.1016/j.jsg.2015.06.007

    CrossRef Google Scholar

    [24] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [25] Ludwig K R. User's Manual forIsoplot 3.0: A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003, 4(1): 1-71.

    Google Scholar

    [26] McKenzie D. Active tectonics of the Mediterraneanregion[J]. Geophysical Journal of the Royal Astronomical Society, 1972, 30: 109-185. doi: 10.1111/j.1365-246X.1972.tb02351.x

    CrossRef Google Scholar

    [27] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    [28] Ramsay J G. Shear zone geometry: A review[J]. Journal of Structural Geology, 1980, 2(1/2): 83-99.

    Google Scholar

    [29] Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacentareas[J]. Tectonophysics, 2002, 344: 175-205. doi: 10.1016/S0040-1951(01)00271-2

    CrossRef Google Scholar

    [30] Shinn Y J, Chough S K, Hwang I G. Structural development and tectonic evolution ofGunsan Basin(Cretaceous-Tertiary)in the central Yellow Sea[J]. Marine and Petroleum Geology, 2010, 27(2): 500-514. doi: 10.1016/j.marpetgeo.2009.11.001

    CrossRef Google Scholar

    [31] Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China Block: New insights from basinanalysis[J]. Journal of Asian Earth Sciences, 2009, 34(3): 376-391. doi: 10.1016/j.jseaes.2008.06.004

    CrossRef Google Scholar

    [32] Shu L S, Zhou X M, Deng P, et al. Mesozoic-Cenozoic basin features and evolution of Southeast China[J]. Acta Geologica Sinica, 2007, 81(4): 573-586. doi: 10.1111/j.1755-6724.2007.tb00981.x

    CrossRef Google Scholar

    [33] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the westPacific[J]. Earth and Planetary Science Letters, 2007, 262(34): 533-542.

    Google Scholar

    [34] Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society of London Special Publications, 1986, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    CrossRef Google Scholar

    [35] Xu X B, Tang S, Lin S F. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China[J]. Journal of Geodynamics, 2016, 98: 31-52. doi: 10.1016/j.jog.2016.03.013

    CrossRef Google Scholar

    [36] Yang Y T. An unrecognized major collision of theOkhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 2013, 126: 96-115. doi: 10.1016/j.earscirev.2013.07.010

    CrossRef Google Scholar

    [37] Yin A. Cenozoic tectonic evolution of Asia: A preliminarysynthesis[J]. Tectonophysics, 2010, 488(14): 293-325.

    Google Scholar

    [38] Zhang Y Q, Dong S W, Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China[J]. Tectonophysics, 2003, 363(3/4): 243-258.

    Google Scholar

    [39] 柏道远, 钟响, 贾朋远, 等. 雪峰造山带靖州盆地断裂构造及其形成背景探讨[J]. 大地构造与成矿学, 2013a, 37(2): 173-183.

    Google Scholar

    [40] 柏道远, 钟响, 贾朋远, 等. 雪峰造山带南段靖州盆地成因性质及形成背景[J]. 中国地质, 2013b, 40(4): 1079-1091.

    Google Scholar

    [41] 柏道远, 熊雄, 杨俊, 等. 雪峰造山带中段地质构造特征[J]. 中国地质, 2014, 41(2): 399-418.

    Google Scholar

    [42] 柏道远, 姜文, 钟响, 等. 湘西沅麻盆地中新生代构造变形特征及区域地质背景[J]. 中国地质, 2015, 42(6): 1851-1875.

    Google Scholar

    [43] 陈留勤, 郭福生, 梁伟, 等. 江西抚崇盆地上白垩统河口组砾石统计特征及其地质意义[J]. 现代地质, 2013, 27(3): 74-82.

    Google Scholar

    [44] 陈正乐, 王永, 周永贵, 等. 江西相山火山-侵入杂岩体锆石SHRIMP定年及其地质意义[J]. 中国地质, 2013, 40(1): 217-231.

    Google Scholar

    [45] 邓平, 舒良树, 杨明桂, 等. 赣江断裂带地质特征及其动力学演化[J]. 地质论评, 2003, 49(2): 113-122.

    Google Scholar

    [46] 韩阳光, 颜丹平, 李政林. 在CorelDRAW平台上进行Fry法有限应变测量的新技术[J]. 现代地质, 2015, 29(3): 494-500.

    Google Scholar

    [47] 江西省地质调查研究院. 江西省1: 25万抚州市幅建造构造图[R]. 2009.

    Google Scholar

    [48] 江新胜, 潘忠习, 徐金沙, 等. 江西信江盆地晚白垩世风成沙丘的发现及其古风向[J]. 地质通报, 2006, 25(7): 833-838.

    Google Scholar

    [49] 李宏伟, 许坤. 郯庐断裂走滑活动与辽河盆地构造古地理格局[J]. 地学前缘, 2001, 8(4): 467-470.

    Google Scholar

    [50] 李建波, 郭磊, 欧阳志侠, 等. 辽南变质核杂岩韧性拆离带的变形特征、应变与运动学涡度分析[J]. 北京大学学报(自然科学版), 2015, 51(6): 1078-1090.

    Google Scholar

    [51] 李建华. 华南中生代大地构造过程—源于北部大巴山和中部沅麻盆地、衡山的构造变形及年代学约束[D]. 中国地质科学院博士学位论文, 2013: 1-205.

    Google Scholar

    [52] 梁琛岳, 刘永江, 孟婧瑶, 等. 舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算[J]. 地球科学, 2015, 40(1): 115-129.

    Google Scholar

    [53] 刘景彦, 林畅松, 卢林, 等. 江汉盆地白垩-新近系主要不整合面剥蚀量分布及其构造意义[J]. 地质科技情报, 2009, 28(1): 1-8.

    Google Scholar

    [54] 申文杰, 刘少峰, 张博, 等. 胶莱盆地白垩纪构造演化[J]. 大地构造与成矿学, 2020, 44(3): 325-339.

    Google Scholar

    [55] 舒良树, 周新民, 邓平, 等. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 2004, 23(910): 876-884.

    Google Scholar

    [56] 唐永, 刘怀庆, 黎清华, 等. 广西灵山断裂带构造应力场地质分析及活动性预测[J]. 大地构造与成矿学, 2015, 39(1): 62-75.

    Google Scholar

    [57] 万天丰. 中国东部中、新生代板内变形构造应力场及其应用[M]. 北京: 地质出版社, 1993: 1-103.

    Google Scholar

    [58] 万天丰, 朱鸿. 中国大陆及邻区中生代-新生代大地构造与环境变迁[J]. 现代地质, 2002, 16(2): 107-120.

    Google Scholar

    [59] 万天丰. 中国大地构造学纲要[M]. 北京: 地质出版社, 2004: 152-179.

    Google Scholar

    [60] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.

    Google Scholar

    [61] 徐先兵. 武夷山地区显生宙构造变形与年代学研究[D]. 南京大学博士学位论文, 2011: 1-136.

    Google Scholar

    [62] 杨水源, 蒋少涌, 赵葵东, 等. 江西相山铀矿田如意亭剖面火山岩的年代学格架及其地质意义[J]. 岩石学报, 2013, 29(12): 4362-4372.

    Google Scholar

    [63] 余心起, 舒良树, 邓平, 等. 中国东南部侏罗纪-第三纪陆相地层沉积特征[J]. 地层学杂志, 2003, 27(3): 254-263.

    Google Scholar

    [64] 余心起, 舒良树, 颜铁增, 等. 赣杭构造带红层盆地原型及其沉积作用[J]. 沉积学报, 2005, 23(1): 12-20.

    Google Scholar

    [65] 曾广乾, 梁恩云, 熊苗, 等. 湘南江永地区多期褶皱的变形特征及叠加关系[J]. 地质科技情报, 2019, 38(4): 153-165.

    Google Scholar

    [66] 曾广乾, 陈柏林, 申景辉, 等. 抚州盆地晚中生代—新生代构造变形特征、形成背景及地质意义[J]. 大地构造与成矿学, 2021a, 45(6): 1094-1110.

    Google Scholar

    [67] 曾广乾, 梁恩云, 刘庚寅, 等. 桂北丹池成矿带南段五圩矿田构造变形、控矿特征和找矿预测[J]. 地质论评, 2021b, 67(6): 1727-1748.

    Google Scholar

    [68] 曾先进, 王明, 范建军, 等. 拉萨-羌塘板块碰撞——来自西藏阿索晚白垩世红层的约束[J]. 地质通报, 2021, 40(9): 1428-1442.

    Google Scholar

    [69] 张进, 马宗晋, 杨健, 等. 雪峰山西麓中生代盆地属性及构造意义[J]. 地质学报, 2010, 84(5): 631-650.

    Google Scholar

    [70] 张岳桥, 董树文, 李建华, 等. 华南中生代大地构造研究新进展[J]. 地球学报, 2012, 33(3): 257-279.

    Google Scholar

    [71] 张岳桥, 赵越, 董树文, 等. 中国东部及邻区早白垩世裂陷盆地构造演化阶段[J]. 地学前缘, 2004, 11(3): 123-133.

    Google Scholar

    [72] 张族坤, 徐亚军, 刘强, 等. 华南东部白垩纪晚期—古近纪构造转换的沉积记录——以粤北南雄盆地为例[J]. 大地构造与成矿学, 2019, 43(3): 575-589.

    Google Scholar

    [73] 郑亚东, 常志忠. 岩石有限应变测量及韧性剪切带[M]. 北京: 地质出版社, 1985: 1-194.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1128) PDF downloads(131) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint