2023 Vol. 42, No. 11
Article Contents

ZHOU Chuanfang, YANG Huaben, DUAN Mingxin, CHEN Zhuo, YU Junbo, DU Haishuang, LI Shaowen, ZHANG Qipeng, HU Chen. 2023. Petrogenesis of Late Cambrian granite in Luoguhe district of the northern Great Xing'an Range and its constrain on the tectonic evolution of the Xing-Meng Orogenic Belt. Geological Bulletin of China, 42(11): 1924-1937. doi: 10.12097/j.issn.1671-2552.2023.11.010
Citation: ZHOU Chuanfang, YANG Huaben, DUAN Mingxin, CHEN Zhuo, YU Junbo, DU Haishuang, LI Shaowen, ZHANG Qipeng, HU Chen. 2023. Petrogenesis of Late Cambrian granite in Luoguhe district of the northern Great Xing'an Range and its constrain on the tectonic evolution of the Xing-Meng Orogenic Belt. Geological Bulletin of China, 42(11): 1924-1937. doi: 10.12097/j.issn.1671-2552.2023.11.010

Petrogenesis of Late Cambrian granite in Luoguhe district of the northern Great Xing'an Range and its constrain on the tectonic evolution of the Xing-Meng Orogenic Belt

  • The Early Paleozoic granites in the northern part of the Great Xing'an Range are mainly distributed along the Mohe-Tahe.In this paper, geochronological and geochemical characteristics of the Luoguhe monzonite in the north of Mohe are studied.Zircons in the monzogranite is of magmatic origin, and LA-ICP-MS U-Pb dating indicates that it was formed in the Late Cambrian (486±3 Ma).The monzonite are characterized by high silicon (SiO2=62.75%~73.32%), rich alkali (AlK=8.30%~9.45%), high aluminum (Al2O3=13.97%~16.53%), low magnesium, low calcium and low titanium, with A/CNK value ranging from 0.91 to 1.10, indicating that monzonite belongs to aluminous and high potassium calc-alkaline rock series.The SiO2 content has a negative correlation with Al2O3 and P2O5.Rb, Th, U, K, Zr, Hf elements are enriched, while Ba, Nb, Ta, Sr, P and Ti are strongly depleted.In the chondrite normalized REE partition curves, LREE is enriched and HREE is depleted, which shows the characteristics of Ⅰ-type granites.Comprehensive analysis shows that the Luoguhe pluton was formed in a post-collisional tectonic setting during the late period of the orogeny between the southern margin of the Siberian plate and the Erguna micro landmass, which was transformed from compression system to extension system.

  • 加载中
  • [1] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [2] Batchelor R A, Bowden P. Petrogenetic interpretation of granitid rock series using multicationic parameters[J]. Chemical Geology, 1985, 45(1): 43-55.

    Google Scholar

    [3] Boynton W V. Cosmochemistry of the Rare Earth Elements Meteorite Studies[J]. Developments in Geochemistry, 1984, 2(2): 63-114.

    Google Scholar

    [4] Feng Z Q, Liu Y J, Long L, et al. Subduction, accretion, and collision during the Neoproterozoic-Cambrianorogenyin the Great Xing' an Range, NE China: insights from geochemistry and geochronology of the Ali River ophiolitic mélange and arc-type granodiorites [J]. Precambrian Research, 2018, 311: 117-135. doi: 10.1016/j.precamres.2018.04.013

    CrossRef Google Scholar

    [5] Jian P, Liu D Y, Kröner A, et al. Time scale of the Early to Mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101(3/4): 233-259.

    Google Scholar

    [6] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171: 223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x

    CrossRef Google Scholar

    [7] Liang Q, Jing H, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5

    CrossRef Google Scholar

    [8] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [9] Middlemost E A K. Naming Materials in the Magma/ Igneous Rock System [J]. Earth Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [10] Peccerillo A, Taylor S R. Geochemistry of eocene Calc Alkaline volcanic rocks from the Kastamonu Area, northern Turkey [J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [11] Pearce J A, Harris N B W, Tingleng A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [12] Salnikova E B, Sergeev S A, Kotov A B, et al. U-Pb zircon dating of granulite metamorphism in the Sludyanskiy Complex, eastern Siberia[J]. Gondwana Research, 1998, 1: 195-205. doi: 10.1016/S1342-937X(05)70830-3

    CrossRef Google Scholar

    [13] Salnikova E B, Kozakov K, Kotov A B, et al. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: Loss of a Precambrian microcontinent[J]. Precambrian Research, 2001, 110: 143-164. doi: 10.1016/S0301-9268(01)00185-1

    CrossRef Google Scholar

    [14] Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement[J]. The Journal of Geology, 1997, 105(3): 295-318. doi: 10.1086/515924

    CrossRef Google Scholar

    [15] Sorokin A A, Kudryashov N M, Li J Y, et al. Early Paleozoic granitoids in the eastern margin of the Argun' terrane, Amur area: first geochemical and geochronologic data[J]. Petrology, 2004, 12(4): 367-376

    Google Scholar

    [16] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Ocean Basalts; Implications for Mantle Composition and rocesses[C] //Saunders A D, Norry M J. Magmatism in Ocean Basins. London: Geological Society Special Publications, 1989: 313-345.

    Google Scholar

    [17] Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated Ⅰ-type granites in NE China(Ⅰ): Geochronology and petrogenesis[J]. Lithos, 2003, 67(3/4): 241-273.

    Google Scholar

    [18] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [19] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6): 1069-1090.

    Google Scholar

    [20] Xiao W J, Windley B F, Huang B C, et al. End-Permian to Mid-Triassic termination of the accretionary processes of the Southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

    CrossRef Google Scholar

    [21] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015

    CrossRef Google Scholar

    [22] Xu B, Zhao P, Wang YY, et al. The pre-Devonian tectonic framework of Xing'an-Mongolia Orogenic Belt (XMOB)in North China[J]. Journal of Asian Earth Sciences, 2015, 97(Part B): 183-196.

    Google Scholar

    [23] Xu M J, Xu W L, Wang F, et al. Age, association and provenance of the "Neoproterozoic" Fengshuigouhe group in the Northwestern Lesser Xingan Range, NE China: Constraints from zircon U-Pb geochronology[J]. Journal of Earth Science, 2012, 23(6): 786-801. doi: 10.1007/s12583-012-0291-0

    CrossRef Google Scholar

    [24] Zhao X, Coe R S, Gilder S A, et al. Palaeomagnetic constraints on the palaeogeography of China: Implications for Gondwana land[J]. Australian Journal of Earth Sciences, 1996, 43(6): 643-672. doi: 10.1080/08120099608728285

    CrossRef Google Scholar

    [25] Zhou J B, Wang B, Wilde S A, et al. Geochemistry and U-Pb zircon Dating of the Toudaoqiao blueschists in the Great Xing'an Range, Northeast China, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 97: 197-210. doi: 10.1016/j.jseaes.2014.07.011

    CrossRef Google Scholar

    [26] 柴明春, 赵国英, 覃小锋, 等. 大兴安岭十八站—韩家园地区中酸性侵入岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质论评, 2018, 64(3): 569-583.

    Google Scholar

    [27] 陈会军, 付俊彧, 钱程, 等. 东北地区前中生代花岗岩类年龄与时空分布[J]. 地质通报, 2021, 40(6): 827-844.

    Google Scholar

    [28] 陈衍景, 张成, 李诺, 等. 中国东北钼矿床地质[J]. 吉林大学学报(地球科学版), 2012, 42(5): 1223-1268.

    Google Scholar

    [29] 杜兵盈, 张昱, 刘宇崴, 等. 大兴安岭北部壮志林场花岗岩年代学特征及其大地构造意义[J]. 地质学报, 2019, 93(12): 3047-3060.

    Google Scholar

    [30] 段明新, 周传芳, 杨华本, 等. 黑龙江省漠河县富源沟林场含电气石花岗岩的形成时代及地质意义[J]. 地质科学, 2019, 54(4): 1290-1307.

    Google Scholar

    [31] 冯志强, 刘永江, 金巍, 等. 东北大兴安岭北段蛇绿岩的时空分布及与区域构造演化关系的研究[J]. 地学前缘, 2019, 26(2): 120-136.

    Google Scholar

    [32] 葛文春, 吴福元, 周长勇, 等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 2005, 50(12): 1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015

    CrossRef Google Scholar

    [33] 葛文春, 隋振民, 吴福元, 等. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 岩石学报, 2007, 23(2): 423-440.

    Google Scholar

    [34] 宫昀迪, 李碧乐, 李治华, 等. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义: 锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.

    Google Scholar

    [35] 黄汲清, 任纪舜, 姜春发, 等. 中国大地构造基本轮廓[J]. 地质学报, 1977, 51(2): 117-135.

    Google Scholar

    [36] 李成禄, 曲晖, 赵忠海, 等. 黑龙江霍龙门地区早石炭世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J]. 中国地质, 2013, 40(3): 859-868. doi: 10.3969/j.issn.1000-3657.2013.03.017

    CrossRef Google Scholar

    [37] 李春雷. 漠河盆地构造特征演化与成盆动力学研究[D]. 中国地质大学(北京)硕士学位论文, 2007: 1-36.

    Google Scholar

    [38] 李锦轶, 和政军, 莫申国, 等. 大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义[J]. 地质通报, 2004, 23(2): 120-129.

    Google Scholar

    [39] 李伍平, 路凤香. 钙碱性火山岩构造背景的研究进展[J]. 地质科技情报, 1999, 18(2): 15-18.

    Google Scholar

    [40] 刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据[J]. 地质学报, 2003, 77(3): 317-327.

    Google Scholar

    [41] 刘建明, 张锐, 张庆洲. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 2004, 11(1): 269-277.

    Google Scholar

    [42] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 37(4): 205-213.

    Google Scholar

    [43] 吕斌, 王涛, 童英, 等. 中亚造山带东部岩浆热液矿床时空分布特征及其构造背景[J]. 吉林大学学报(地球科学版), 2017, 47(2): 305-34.

    Google Scholar

    [44] 秦秀峰, 尹志刚, 汪岩, 等. 大兴安岭北端漠河地区早古生代埃达克质岩特征及地质意义[J]. 岩石学报, 2007, 23(6): 1501-1511.

    Google Scholar

    [45] 曲晖, 李成禄, 赵忠海, 等. 大兴安岭东北部多宝山地区花岗岩锆石U-Pb年龄及岩石地球化学特征[J]. 中国地质, 2011, 38(2): 292-300.

    Google Scholar

    [46] 任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999, 6(3): 85-93.

    Google Scholar

    [47] 佘宏全, 李进文, 向安平, 等. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 2012, 28(2): 571-94.

    Google Scholar

    [48] 隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因[J]. 世界地质, 2006, 25(3): 229-236.

    Google Scholar

    [49] 隋振民, 葛文春, 徐学纯, 等. 大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J]. 岩石学报, 2009, 25(10): 2679-2686.

    Google Scholar

    [50] 汪岩, 杨晓平, 那福超, 等. 大兴安岭北段塔河地区晚寒武世中基性火山岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 126-138.

    Google Scholar

    [51] 武广, 孙丰月, 赵财胜, 等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 2005, 50(20): 2278-2288.

    Google Scholar

    [52] 吴琼, 丰成友, 瞿泓滢, 等. 大兴安岭北部漠河地区早奥陶世A型花岗岩锆石U-Pb年代学、地球化学及Hf同位素研究[J]. 地质学报, 2019, 93(2): 368-380.

    Google Scholar

    [53] 吴子杰, 汪洋, 崔培龙, 等. 大兴安岭北部诺敏河地区早石炭世A型花岗岩的年代学、地球化学及Hf同位素研究[J]. 地质学报, 2020, 94(8): 2200-2211.

    Google Scholar

    [54] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646.

    Google Scholar

    [55] 杨奇荻. 大兴安岭及其邻区花岗岩Nd同位素时空演变及地壳深部组成结构和生长意义[D]. 中国地质科学院博士学位论文, 2014: 1-79.

    Google Scholar

    [56] 杨泽黎, 胡晓佳, 王树庆, 等. 兴蒙造山带南缘早古生代增生造山带内前寒武纪地层的识别及其地质意义[J]. 地球科学, 2021, 46(8): 2786-2803.

    Google Scholar

    [57] 张丽, 刘永江, 李伟民, 等. 关于额尔古纳地块基地性质和东界的讨论[J]. 地质科学, 2013, 48(1): 227-244.

    Google Scholar

    [58] 张彦龙, 葛文春, 柳小明, 等. 大兴安岭新林镇岩体的同位素特征及其地质意义[J]. 吉林大学学报: 地球科学版, 2008, 38(2): 177-186.

    Google Scholar

    [59] 张彦龙, 葛文春, 高研, 等. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J]. 岩石学报, 2010, 23(4): 1059-1073.

    Google Scholar

    [60] 赵振华. 关于岩石微量元素构造环境判别图解使用的有关问题[J]. 大地构造与成矿学, 2007, 31(1): 92-103.

    Google Scholar

    [61] 赵芝. 大兴安岭北部晚古生代岩浆作用及其构造意义[D]. 吉林大学博士学位论文, 2011: 1-87.

    Google Scholar

    [62] 周传芳, 杨华本, 李向文, 等. 大兴安岭北段新林地区晚石炭世花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(1): 97-111.

    Google Scholar

    [63] 周传芳, 杨华本, 蔡艳龙, 等. 漠河盆地西缘漠河组形成时代及物源区构造环境判别[J]. 中国地质, 2021, 48(3): 832-853.

    Google Scholar

    [64] 朱志敏, 赵振华, 熊小林, 等. 西天山特克斯晚古生代辉长岩岩石地球化学[J]. 岩石矿物学杂志, 2011, 29(6): 675-690.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1502) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint