2023 Vol. 42, No. 11
Article Contents

XU Shengli. 2023. Zircon U-Pb age and tectonic genesis of the granite in the Beizhan iron ore deposit of western Tianshan, Xinjiang. Geological Bulletin of China, 42(11): 1954-1966. doi: 10.12097/j.issn.1671-2552.2023.11.012
Citation: XU Shengli. 2023. Zircon U-Pb age and tectonic genesis of the granite in the Beizhan iron ore deposit of western Tianshan, Xinjiang. Geological Bulletin of China, 42(11): 1954-1966. doi: 10.12097/j.issn.1671-2552.2023.11.012

Zircon U-Pb age and tectonic genesis of the granite in the Beizhan iron ore deposit of western Tianshan, Xinjiang

  • The Awulale Mineralization Belt in the Western Tianshan Mountains is one of the important iron mineralization belts in China, but there is still controversy over the genetic types and tectonic environment of iron deposits in this mineralization belt.The main reason for the inconsistency in understanding is the lack of in-depth research on the iron-bearing volcanic rocks and granites intruded into them, especially on the granites that may be related to mineralization.By studying the zircon U-Pb age and rock geochemical data of the granites in the Beizhan iron mining area of the Awulale Metallogenic Belt, this paper aims to explore their genesis and tectonic environment and provide new information on the genesis of iron deposits in the Western Tianshan.LA-MC-ICP-MS zircon U-Pb dating of the granites in the Beizhan iron mining area represent that the age of the K-feldspar granite is 321.5±3.6 Ma, and the age of the granite porphyry is 308±1.2 Ma, which was formed in Late Carboniferous.The geochemical characteristics of the rock samples show that they have high K2O+CaO contents and are characterized by quasi-aluminous features; the chondrite normalized distribution pattern of rare earth elements shows steep left and gentle right, and δEu value is strongly negative; trace elements analysis show enrichment in Rb, K, Th, Sr, U, etc., and depletion in Ba, Nb, Ta, Ti, P and other elements.Combined with the tectonic environment discrimination diagrams, it is believed that they were formed in a post-collisional environment.The εHf(t)values range between 5.7~13.3 and 7.5~12.5, with average values of 10.91 and 10.06 respectively, which are higher positive values.The Hf two-stage mode ages tMD2 are between 479~947 Ma and 526~843 Ma, with average ages of 700 Ma and 679 Ma, respeetively.Based on comprehensive regional research results, it is believed that the Late Carboniferous Awulale Iron Metallogenic Belt of Western Tianshan was formed in a period of tectonic transition, and may be post-collision stage from convergence to extension evolution.During this period, granite in Beizhan region was formed.

  • 加载中
  • [1] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1): 59-79.

    Google Scholar

    [2] Duan S, Zhang Z, Jiang Z, et al. Geology, geochemistry, and geochronology of the Dunde iron-zinc ore deposit in western Tianshan, China[J]. Ore Geology Reviews, 2014, 57(57): 441-461.

    Google Scholar

    [3] Jiang T, Gao J, Klemd R, et al. Genetically and geochronologically contrasting plagiogranites in South Central Tianshan ophiolitic mélange: Implications for the breakup of Rodinia and subduction zone processes[J]. Journal of Asian Earth Sciences, 2015, 113(DEC. 1PT. 1): 266-281.

    Google Scholar

    [4] Jiang Z, Zhang Z, Wang Z, et al. Geology, geochemistry, and geochronology of the Zhibo iron deposit in the Western Tianshan, NW China: Constraints on metallogenesis and tectonic setting[J]. Ore Geology Reviews, 2014, 57(3): 406-424.

    Google Scholar

    [5] Long X, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U-Pb and Hf isotopic constraints[J]. Precambrian Research, 2010, 180(3): 272-284.

    Google Scholar

    [6] Long X, Yuan C, Sun M, et al. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China[J]. Precambrian Research, 2011, 187(1): 1-14.

    Google Scholar

    [7] Ludwig K R. Using isoplot/EX, version 2, a geolocronological toolkit for Microsoft excel[J]. Berkeley Geochronological Center Special Publication, 1999, 47: 151-181.

    Google Scholar

    [8] Middlemost E A K. Naming materials in the magma/igneous rocksystem[J]. Earth-Science Reviews, 1994, 37(3): 215-224.

    Google Scholar

    [9] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [10] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [11] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [12] Qian Q, Gao J, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal of Earth Sciences, 2009, 98(3): 551-569. doi: 10.1007/s00531-007-0268-x

    CrossRef Google Scholar

    [13] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [14] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [15] Wang X S, Gao J, Klemd R, et al. The Central Tianshan Block: A microcontinent with a Neoarchean-Paleoproterozoic basement in the southwestern Central Asian Orogenic Belt[J]. Precambrian Research, 2017, 295: 130-150. doi: 10.1016/j.precamres.2017.03.030

    CrossRef Google Scholar

    [16] Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[C]//Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507.

    Google Scholar

    [17] Xiao W J, Qin K Z, Sun S, et al. Paleozoicaccretionary and collisional tectonics of the eastern Chinese Tianshan: implications for crustal growth of central Asia[J]. EGS - AGU - EUG Joint Assembly, 2003.

    Google Scholar

    [18] 董连慧, 冯京, 庄道泽, 等. 新疆地质矿产勘查回顾与展望[J]. 新疆地质, 2011, 29(1): 1-6.

    Google Scholar

    [19] 董亮琼, 董国臣, 黄慧, 等. 东昆仑土鲁音花岗岩的地球化学, 锆石U-Pb年龄及地质意义[J]. 中国地质, 2016, 43(5): 1737-1749.

    Google Scholar

    [20] 冯金星. 西天山阿吾拉勒成矿带火山岩型铁矿[M]. 北京: 地质出版社, 2010.

    Google Scholar

    [21] 高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804-1816.

    Google Scholar

    [22] 郭新成, 张建收, 余元军, 等. 新疆和静县备战铁矿地质特征及找矿标志[J]. 新疆地质, 2009, 27(4): 341-345.

    Google Scholar

    [23] 葛松胜, 杜杨松, 王树星, 等. 新疆西天山敦德铁矿区矽卡岩成因: 矿物学和稀土元素地球化学约束[J]. 现代地质, 2014, 28(1): 61-72.

    Google Scholar

    [24] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595-2604.

    Google Scholar

    [25] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492.

    Google Scholar

    [26] 龙灵利, 高俊, 钱青, 等. 西天山伊犁地区石炭纪火山岩地球化学特征及构造环境[J]. 岩石学报, 2008, 24(4): 699-710.

    Google Scholar

    [27] 李凤明, 赵同阳, 高奇, 等. 新疆阿吾拉勒铁矿带成矿系列和找矿重大突破[J]. 地球学报, 2023, 44(5): 849-866.

    Google Scholar

    [28] 刘学良, 弓小平, 尹得功, 等. 新疆备战铁矿矽卡岩矿床地球化学特征及其成因意义[J]. 新疆大学学报(自然科学版), 2013, (4): 469-475.

    Google Scholar

    [29] 刘睿, 王历星, 陈根文. 西天山阿吾拉勒成矿带群吉A型花岗岩成因、地质意义及成矿潜力评价[J]. 岩石学报, 2017, 33(6): 1741-1754.

    Google Scholar

    [30] 罗勇, 牛贺才, 单强等. 西天山玉希莫勒盖达坂玄武安山岩-高钾玄武安山岩-粗安岩组合的发现及其地质意义[J]. 岩石学报, 2009, 25(4): 934-943.

    Google Scholar

    [31] 潘鸿迪, 申萍, 李昌昊, 等. 新疆备战火山岩型铁矿床大哈拉军山组碳酸盐岩中铁矿体的发现及成因意义[J]. 岩石学报, 2022, 38(10): 3104-3124.

    Google Scholar

    [32] 孙吉明, 马中平, 徐学义, 等. 新疆西天山备战铁矿流纹岩的形成时代及其地质意义[J]. 地质通报, 2012, 31(12): 1973-1982.

    Google Scholar

    [33] 童英, 王涛, 洪大卫, 等. 北疆及邻区石炭—二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6): 619-641.

    Google Scholar

    [34] 王博, 舒良树, Cluzel D, 等. 伊犁北部博罗霍努岩体年代学和地球化学研究及其大地构造意义[J]. 岩石学报, 2007, 23(8): 1885-1900.

    Google Scholar

    [35] 汪帮耀, 胡秀军, 王江涛, 等. 西天山查岗诺尔铁矿矿床地质特征及矿床成因研究[J]. 矿床地质, 2011, 30(3): 385-402.

    Google Scholar

    [36] 汪帮耀, 荆德龙, 姜常义, 等. 西天山阿吾拉勒火山岩型铁矿带东段成矿地质背景与成矿机理[J]. 岩石学报, 2017, 33(2): 385-397.

    Google Scholar

    [37] 王岚, 杨理勤, 王亚平, 等. 锆石LA-ICP-MS原位微区U-Pb定年及微量元素的同时测定[J]. 地球学报, 2012, 33(5): 763-772.

    Google Scholar

    [38] 王盟, 裴先治, 张进江, 等. 伊犁地块北缘早石炭世阿拉斯坦闪长岩成因及其对北天山洋俯冲过程的启示[J]. 地质通报, 2023, 42(5): 771-787.

    Google Scholar

    [39] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.

    Google Scholar

    [40] 夏林圻, 夏祖春, 徐学义, 等. 天山石炭纪大火成岩省与地幔柱[J]. 地质通报, 2004, 23(9): 903-910.

    Google Scholar

    [41] 徐学义, 王洪亮, 马国林等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志, 2010, 29(6): 691-706.

    Google Scholar

    [42] 赵仁夫, 程晓红, 王庆明, 等. 西天山-西南天山成矿带勘查新发现及找矿远景[J]. 西北地质, 2006, 39(2): 34-56.

    Google Scholar

    [43] 张招崇, 董书云, 黄河, 等. 西南天山二叠纪中酸性侵入岩的地质学和地球化学: 岩石成因和构造背景[J]. 地质通报, 2009, 28(12): 1827-1839.

    Google Scholar

    [44] 张喜, 高俊, 董连慧, 等. 新疆中天山乔霍特铜矿区Ⅰ型花岗岩锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 岩石学报, 2011, 27(6): 1637-1648.

    Google Scholar

    [45] 左国朝, 张作衡, 王志良, 等. 新疆西天山地区构造单元划分、地层系统及其构造演化[J]. 地质论评, 2008, 54(6): 748-767.

    Google Scholar

    [46] 朱永峰, 周晶, 宋彪, 等. 新疆"大哈拉军山组"火山岩的形成时代问题及其解体方案[J]. 中国地质, 2006, 33(3): 487-497.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(667) PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint