Citation: | JIN Shengkai, XIE Zhiyuan, LI Mingjun, LIU Bo, FENG Yongcai. 2023. Petrogenesis for Neoproterozoic granitic rocks in Altyn Qiemo-Ruoqiang area, and implications for determining the timing of Rodinia supercontinent's convergence. Geological Bulletin of China, 42(11): 1909-1923. doi: 10.12097/j.issn.1671-2552.2023.11.009 |
The Neoproterozoic granitic magma activity was widespread in the Altyn orogenic belt, with formation ages around 800~1000 Ma.These magmatic events are thought to be associated with the convergence of the Rodinia supercontinent.Therefore, the study of Neoproterozoic granitic magma is of great significance for gaining insights into the evolution processes of the Altyn orogenic belt.In this study, we present precise results from petrological, geochronological and geochemical investigations of the granitic rocks from the Qiemo-Ruoqiang area in the southern Altyn block.Our findings indicate that: ①In comparison to the enrichment of light rare earth elements(LREE), heavy rare earth elements(HREE)exhibit a pronounced right-leaning characteristic, accompanied by a distinct negative Eu anomaly(δEu=0.14~0.6).These rocks are enriched in large ion lithophile elements like Th, U, and K, while simultaneously showing depletion in high field strength elements such as Ba, Ti, Nb, Ta, and Sr.②Zircon U-Pb ages fall within the range of approximately 899 Ma to 915 Ma.Comprehensive studies have shown that the three categories of granitic rocks in the Qimo-Ruoqiang region were formed in a syn-collision tectonic environment, which were the products of subduction and collision between plates during the convergence stage of the Rodinia supercontinent.
[1] | Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges(France)and northern Schwarzwald(Germany)[J]. Lithos, 2000, 50: 51-73. doi: 10.1016/S0024-4937(99)00052-3 |
[2] | Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174. |
[3] | Douce P A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geol. Soc. Lond. Spec. Publ., 1999, 168: 55-75. doi: 10.1144/GSL.SP.1999.168.01.05 |
[4] | Frost B R, Arculus R J, Barnes C G, et al. A geochemical classification of granitic rocks[J]. Journal of Petrology, 2001, 42: 2033-2048. doi: 10.1093/petrology/42.11.2033 |
[5] | Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8 |
[6] | Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews of Mineralogy and Geochemistry, 2003, 53: 27-62. doi: 10.2113/0530027 |
[7] | Langmuir C H. Geochemical consequences of in situ crystallization[J]. Nature, 1989, 340: 199-205. doi: 10.1038/340199a0 |
[8] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. |
[9] | Lu S N, Li H, Zhang C, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments[J]. Precambrian Research, 2008, 160(1/2): 94-107. |
[10] | Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
[11] | McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. |
[12] | Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(3/4): 215-224. |
[13] | Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 |
[14] | Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral Petrol., 1976, 58: 63-81. doi: 10.1007/BF00384745 |
[15] | Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891 |
[16] | Reiners P W, Nelson B K, Ghiorso M S. Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle derived magmas[J]. Geology, 1995, 23: 563-566. |
[17] | Rushmer T. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions[J]. Contributions to Mineral and Petrology, 1991, 107(1): 41-59. doi: 10.1007/BF00311184 |
[18] | Santosh M, Maruyama S, Yamamoto S. The making and breaking of supercontinents: Some speculations based onsuperplumes, super downwelling and the role of tectosphere[J]. Gondwana Research, 2009, 15(3): 324-341. |
[19] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[20] | Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3 |
[21] | Yu S Y, Zhang J X, Pablo García del Real, et al. The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau: Constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks[J]. Journal of Asian Earth Sciences, 2013, 73: 372-395. doi: 10.1016/j.jseaes.2013.04.042 |
[22] | 陈红杰, 吴才来, 雷敏, 等. 南阿尔金陆块科克萨依新元古代花岗岩成因及地质意义[J]. 地球科学, 2018, 43(4): 1278-1292. |
[23] | 校培喜, 高晓峰, 胡云绪, 等. 阿尔金-东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014: 54-55. |
[24] | 李琦, 曾忠诚, 陈宁, 等. 阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J]. 现代地质, 2015, 29(6): 1271-1283. |
[25] | 刘良, 康磊, 曹玉亭, 等. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学: 地球科学, 2015, 45(8): 1126-1137. |
[26] | 刘良, 周鼎武, 王焰, 等. 东秦岭秦岭杂岩中的高压麻粒岩及其地质意义初探[J]. 中国科学(D辑), 1996, 26(增刊): 56-63. |
[27] | 刘永顺, 于海峰, 辛后田, 等. 阿尔金山地区构造单元划分和前寒武纪重要地质事件[J]. 地质通报, 2009, 28(10): 1430-1438. |
[28] | 卢欣祥. 秦岭花岗岩揭示的秦岭构造演化过程——秦岭花岗岩研究进展[J]. 河南地质情报, 1995, (3): 213-215. |
[29] | 陆松年, 李怀坤, 陈志宏, 等. 新元古时期中国古大陆与罗迪尼亚超大陆的关系[J]. 地学前缘, 2004, 11(2): 515-523. doi: 10.3321/j.issn:1005-2321.2004.02.021 |
[30] | 梅华林, 李惠民, 陆松年, 等. 甘肃柳园地区花岗质岩石时代及成因[J]. 岩石矿物学杂志, 1999, 18(1): 14-1. |
[31] | 裴先治, 丁仨平, 张国伟, 等. 西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质学报, 2007, 81(6): 772-786. |
[32] | 覃小锋, 李江, 陆济璞, 等. 阿尔金碰撞造山带西段的构造特征[J]. 地质通报, 2006, 25(1): 104-112. |
[33] | 覃小锋, 夏斌, 黎春泉, 等. 阿尔金构造带西段前寒武纪花岗质片麻岩的地球化学特征及其构造背[J]. 现代地质, 2008, 22(1): 34-44. |
[34] | 王超, 刘良, 车自成, 等. 阿尔金南缘榴辉岩带中花岗片麻岩的时代及构造环境探讨[J]. 高校地质学报, 2006, 12(1): 74-82. |
[35] | 王立社, 张巍, 段星星, 等. 阿尔金环形山花岗片麻岩同位素年龄及成因研究[J]. 岩石学报, 2015, 31(1): 119-132. |
[36] | 王晓峰, 熊波, 戚戎辉, 等. 滇东北昭通地区峨眉山玄武岩钕-锶-铅同位素特征——峨眉山地幔柱源区性质与Rodinia超大陆事件的耦合关系[J]. 地质通报, 2021, 40(7): 1084-1093. |
[37] | 王星, 蔺新望, 张亚峰, 等. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄及其对阿尔泰造山带构造演化的启示[J]. 地质通报, 2022, 41(9): 1574-1588. |
[38] | 王永和, 校培喜, 张汉文, 等. 苏吾什杰幅地质调查新成果及主要进展[J]. 地质通报, 2004, 23(5/6): 560-563. |
[39] | 王云山, 陈基娘. 青海省及毗邻地区变质地带与变质作用[M]. 北京: 地质出版社, 1987. |
[40] | 吴才来, 郜源红, 雷敏, 等. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J]. 岩石学报, 2014, 30(8): 2297-2323. |
[41] | 吴才来, 雷敏, 吴迪, 等. 南阿尔金古生代花岗岩U-Pb定年及岩浆活动对造山带构造演化的响应[J]. 地质学报, 2016, 90(9): 2276-2315. |
[42] | 许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, 73(3): 193-205. |
[43] | 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11. |
[44] | 于海峰, 陆松年, 梅华林, 等. 中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义[J]. 岩石学报, 1999, 15(4): 532-538. |
[45] | 曾忠诚, 边小卫, 赵江林, 等. 阿尔金南缘冰沟南组火山岩锆石U-Pb年龄及其前寒武纪构造演化意义[J]. 地质论评, 2019, 65(1): 103-118. |
[46] | 曾忠诚, 洪增林, 刘芳晓, 等. 阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约[J]. 中国地质, 2020, 47(3): 569-589. |
[47] | 张安达, 刘良, 陈丹玲, 等. 阿尔金超高压花岗质片麻岩中锆石SHRIMP U-Pb定年及其地质意义[J]. 科学通报, 2004, 49(22): 2335-234. |
[48] | 赵振华, 王中刚, 雏天人, 等. 阿尔泰花岗岩类型与成岩模型的REE及O、Pb、Sr、Nd同位素组成依据[J]. 矿物岩石地球化学通报, 1991, 24(3): 176-17. |
Sketch geological map of Altyn Tagh orogenic belt and study area
TAS(a), SiO2 versus K2O(b) and A/CNK versus A/NK (c) diagrams of the studied granitic intrusions in Qiemo-Ruoqiang area
SiO2 versus Na2O+K2O-CaO covariance diagrams of the studied granitic intrusions in Qiemo-Ruoqiang area
Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns(b)for the studied granitic intrusions in Qiemo-Ruoqiang area
Cathodoluminescence images and U-Pb concordia diagrams of representative zircons from the studied granitic intrusions in Qiemo-Ruoqiang area
(Al2O3+FeO+MgO +TiO2) versus Al2O3/(FeO + MgO + TiO2)(a) and(Al2O3-(K2O+Na2O))-CaO-(TFeO+MgO)(b)diagrams of the studied granitic intrusions in Qiemo-Ruoqiang area
C/MF versus A/MF covariance diagram of the studied granitic intrusions in Qiemo-Ruoqiang area
Harker diagrams of quartz monzonites and alkali feldspar granites in Qiemo-Ruoqiang area
Diagrams of tectonic environment of trace elements in three types of granitic rocks in Qiemo-Ruoqiang area