2023 Vol. 42, No. 11
Article Contents

WU Bin, WANG Aiguo, PENG Bo, WANG Jilong, ZHANG Yiwu, BAO Xiaoming, YE Xiantao, YU Junjie. 2023. Chronology and geochemical characteristics of the Lapeiquan Formation rhyolite in the Altun Kaladawan area, Xinjiang, and implications for tectonic evolution of the northern margin of Altun. Geological Bulletin of China, 42(11): 1894-1908. doi: 10.12097/j.issn.1671-2552.2023.11.008
Citation: WU Bin, WANG Aiguo, PENG Bo, WANG Jilong, ZHANG Yiwu, BAO Xiaoming, YE Xiantao, YU Junjie. 2023. Chronology and geochemical characteristics of the Lapeiquan Formation rhyolite in the Altun Kaladawan area, Xinjiang, and implications for tectonic evolution of the northern margin of Altun. Geological Bulletin of China, 42(11): 1894-1908. doi: 10.12097/j.issn.1671-2552.2023.11.008

Chronology and geochemical characteristics of the Lapeiquan Formation rhyolite in the Altun Kaladawan area, Xinjiang, and implications for tectonic evolution of the northern margin of Altun

More Information
  • Due to the low level studies on the Altun Lapeiquan Formation in Xinjiang, its depositional age and tectonic genesis are still in doubt.Chronological and geochemical studies were carried out on the rhyolites of the Lapeiquan Formation.The results of zircon LA-ICP-MS U-Pb dating show that the ages of the second and third member rhyolites of the Lapaiquan Formation are 497±2.0 Ma and 483.4±1.9 Ma, respectively.The petrogeochemical studies show that the samples are Si-rich(70.07%~78.55%), Mg-poor(0.32%~0.58%), and Mg#-low(24~30).The rare earth elements exhibit the characteristics of enrichment of light rare earth elements and relatively deficient in heavy rare earth elements((La/Yb)N=10.23~12.73), and the negative Eu is abnormally obvious(δEu=0.10~0.19);the analysis of trace elements shows that the samples are obviously enriched in La, Nd, Zr, Ce, Sm, U, Th, Hf, etc., and relatively deficient in Sr, Nb, Ti, etc.Combined with the previous researches, the depositional age of the Lapeiquan Formation is determined to be Late Cambrian-Early Ordovician.The second member of rhyolite has the characteristics of A-type granite, and it most likely came from partial melting of crustal materials, and the tectonic environment is a post-arc extensional environment caused by the reversal of the North Altun Ocean.

  • 加载中
  • [1] Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges(France)and Northern Schwarzwald(Germany)[J]. Lithos, 2000, 50(1/2/3): 51-73.

    Google Scholar

    [2] Eby G N. Chemical Subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [3] Hu Z C, Liu Y S, Chen L, et al. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 425-430. doi: 10.1039/C0JA00145G

    CrossRef Google Scholar

    [4] King P L, White A J R, Chappell B W, et al. Characterization and Origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [5] Le M R W. A proposal by the IUGS subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica(TAS)diagram[J]. Australian. J. Earth Sci., 1984, 31: 243-255. doi: 10.1080/08120098408729295

    CrossRef Google Scholar

    [6] Liu L, Wang C, Chen D L, et al. Petrology and geochronology of HP-UHP rocks from the south Altyn Tagh, northwestern China[J]. Journal of Asian Earth Sciences, 2009, 35: 232-244. doi: 10.1016/j.jseaes.2008.10.007

    CrossRef Google Scholar

    [7] Liu Y J, Neubauer F, Genser J, et al. Geochronology of the initiation and displacement of the Altyn strike-slip fault, western China[J]. Journal of Asian Earth Sciences, 2006, 29(2/3): 243-252.

    Google Scholar

    [8] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced meltperidotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements inzircons from mantle xenoliths[J]. Journal of Petrology, 2010a, 51(1/2): 537-571.

    Google Scholar

    [9] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotopeand trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010b, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [10] Ludwig K R. User's manual for isoplot 3.0: A geochemical toolkit for Microsoft Excel[J]. Berkely Geochronology Center Special Publication, 2003, 4: 1-70.

    Google Scholar

    [11] Martin H. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429. doi: 10.1016/S0024-4937(98)00076-0

    CrossRef Google Scholar

    [12] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [13] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5

    CrossRef Google Scholar

    [14] Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Research, 1991, 51(1/4): 1-25.

    Google Scholar

    [15] Schiano P, Monzier M, Eissen J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 2010, 160(2): 297-312. doi: 10.1007/s00410-009-0478-2

    CrossRef Google Scholar

    [16] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42(1): 13-345.

    Google Scholar

    [17] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [18] Whalen J B, Currie K L, Chappell B W. A type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [19] Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001

    CrossRef Google Scholar

    [20] Ye X T, Zhang C L, Wang A G, et al. Early Paleozoic slab rollback in the North Altun, Northwest China: New evidence from mafic intrusions and high-Mg andesites[J]. Lithos phere, 2018, 10: 687-707.

    Google Scholar

    [21] Zen E A. Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints[J]. Journal of Petrology, 1986, 27(5): 1095-1117. doi: 10.1093/petrology/27.5.1095

    CrossRef Google Scholar

    [22] 陈柏林, 崔玲玲, 白彦飞, 等. 阿尔金断裂走滑位移的新认识——来自阿尔金山东段地质找矿进展的启示[J]. 岩石学报, 2010, 26(11): 3387-3396.

    Google Scholar

    [23] 陈柏林, 李松彬, 蒋荣宝, 等. 阿尔金喀腊大湾地区中酸性火山岩SHRIMP年龄及其构造环境[J]. 地质学报, 2016, 90(4): 708-727. doi: 10.3969/j.issn.0001-5717.2016.04.008

    CrossRef Google Scholar

    [24] 陈宣华, 尹安, Gehrels G E, 等. 阿尔金山东段地质热年代学与构造演化[J]. 地学前缘, 2009, 16(3): 207-219. doi: 10.3321/j.issn:1005-2321.2009.03.017

    CrossRef Google Scholar

    [25] 陈正乐, 万景林, 王小凤, 等. 阿尔金断裂8Ma左右的快速走滑及其地质意义[J]. 地球学报, 2002, 23(4): 295-300. doi: 10.3321/j.issn:1006-3021.2002.04.002

    CrossRef Google Scholar

    [26] 崔军文, 唐哲民, 邓晋福, 等. 阿尔金断裂系[M]. 北京: 地质出版社, 1999: 1-249.

    Google Scholar

    [27] 董昕. 西藏冈底斯带西南部中新生代花岗岩年代学与地球化学[D]. 中国地质大学(北京)硕士学位论文, 2008.

    Google Scholar

    [28] 高林志, 尹崇玉, 张恒, 等. 云南晋宁地区柳坝塘组凝灰岩SHRIMP锆石U-Pb年龄及其对晋宁运动的制约[J]. 地质通报, 2015, 34(9): 1595-1604.

    Google Scholar

    [29] 胡培远, 李才, 吴彦旺, 等. 青藏高原古特提斯洋早石炭世弧后拉张: 来自A型花岗岩的证据[J]. 岩石学报, 2016, 32(4): 1219-1231.

    Google Scholar

    [30] 蒋少涌, 赵葵东, 姜耀辉, 等. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J]. 高校地质学报, 2008, 14(4): 496-509.

    Google Scholar

    [31] 李猛, 查显锋, 胡朝斌, 等. 东昆仑西段阿确墩地区白沙河岩组锆石U-Pb年龄——对前寒武纪基底演化的约束[J]. 地质通报, 2021, 40(1): 42-58.

    Google Scholar

    [32] 李梦瞳, 唐军, 王志伟, 等. 内蒙中部苏左旗早石炭世火山岩年代学与地球化学研究: 对中亚造山带东部石炭纪构造演化和地壳属性的制约[J]. 岩石学报, 2020, 36(3): 801-819.

    Google Scholar

    [33] 李成志, 杨文光, 朱利东, 等. 西藏墨竹工卡地区早侏罗世花岗岩地球化学、岩石成因及其地质意义[J]. 地球科学, 2020, 45(5): 1556-1572.

    Google Scholar

    [34] 刘良, 孙勇, 校培喜, 等. 阿尔金发现超高压(>3.8GPa)石榴二辉橄榄岩[J]. 科学通报, 2002, 47(9): 657-662.

    Google Scholar

    [35] 倪康, 武彬, 叶现韬. 新疆阿尔金北缘拉配泉组流纹岩的锆石U-Pb年龄及其地质意义[J]. 华东地质, 2017, 38(3): 168-174.

    Google Scholar

    [36] 戚学祥, 李海兵, 吴才来, 等. 北阿尔金恰什坎萨依花岗闪长岩的SHRIMP U-Pb锆石定年及其地质意义[J]. 科学通报, 2005, 50(6): 571-576.

    Google Scholar

    [37] 邱家骧, 林景仟. 岩石化学[M]. 北京: 地质出版社, 1991: 30-240.

    Google Scholar

    [38] 邱检生, 王德滋, 蟹泽聪史, 等. 福建沿海铝质A型花岗岩的地球化学及岩石成因[J]. 地球化学, 2000, 29(4): 313-321.

    Google Scholar

    [39] 新疆维吾尔自治区地质矿产勘查开发局第一地质大队, 黄金地质研究所. 若羌县阿克达坂东一带区域地质调查报告(1: 5万)[R]. 2008.

    Google Scholar

    [40] 田辉, 张健, 李怀坤, 等. 蓟县系中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义[J]. 地球学报, 2015, 36(5): 647-658.

    Google Scholar

    [41] 王坤, 蔡志超, 王玺, 等. 东昆仑西段原特提斯洋洋盆闭合时间——来自新疆木孜塔格地区同碰撞花岗岩的证据[J]. 地质通报, 2023, 42(9): 1556-1570.

    Google Scholar

    [42] 王强, 赵振华, 熊小林. 桐柏-大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, 19(4): 297-306.

    Google Scholar

    [43] 武彬, 王爱国, 张传林, 等. 新疆若羌喀腊大湾铁矿床辉钼矿Re-Os定年及成因[J]. 地质通报, 2019, 38(8): 1362-1368.

    Google Scholar

    [44] 新疆维吾尔自治区地质局区域地质调查大队. 索尔库里幅区域地质报告(1: 20万)[R]. 1981.

    Google Scholar

    [45] 杨经绥, 史仁灯, 吴才来, 等. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J]. 岩石学报, 2008, 24(7): 1567-1584.

    Google Scholar

    [46] 张传林, 马华东, 李怀坤, 等. 塔里木北缘库鲁克塔格地区古元古界——祝贺芮行健先生90华诞[J]. 华东地质, 2022, 43(2): 133-140.

    Google Scholar

    [47] 张建新, 孟繁聪, 于胜尧, 等. 北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义[J]. 中国地质, 2007, 34(4): 558-564.

    Google Scholar

    [48] 朱弟成, 潘桂棠, 莫宣学, 等. 冈底斯中北部晚侏罗世—早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 2006, 22(3): 534-546.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1063) PDF downloads(101) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint